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Abstract— The ability to guarantee safety and progress for
all vehicles is vital to the success of the autonomous vehicle
industry. We present a framework for designing autonomous
vehicle behavior in a way that is safe and guarantees progress
for all agents. In this paper, we first introduce a new game
paradigm which we term the quasi-simultaneous game. We
then define an agent protocol that all agents must use to make
decisions in this quasi-simultaneous game setting. According
to the protocol, agents first select an intended action using a
behavioral profile. Then, the protocol defines whether an agent
has precedence to take its intended action or must take a sub-
optimal action. The protocol ensures safety under all traffic
conditions and liveness for all agents under ‘sparse’ traffic
conditions. We provide proofs of correctness of the protocol
and validate our results in simulation.

I. INTRODUCTION

A prerequisite for introducing autonomous vehicles into
our society is a compelling proof of their safety and efficacy.
Unfortunately, designing agent strategies in interactive multi-
agent settings is extremely difficult since agent behavior
is highly coupled and the computational complexity grows
exponentially when reasoning about joint action spaces.

Most approaches for designing agent behavior focus on
designing an individual agent’s strategy while modeling
interactions with other agents using some interactive be-
havioral model. Minimum violation motion-planning has
been proposed to help the vehicle choose the trajectory that
minimizes violation of a set of ordered rules [26], [30].
Rulebooks are a way to set priorities among possibly conflict-
ing sets of specifications [5]. The game-theoretic approach
has been to model agent decision-making as interacting
partially-observable Markov Decision Processes (POMDPs)
[3], [10]. These methods often capture the reactivity of agents
by modeling a reward function defined on a joint action
space but suffers from the curse of dimensionality. Data-
driven methods are used to learn interactive models between
agents and design an optimal strategy for an individual agent
based on this learned model [21], [20]. When designing an
individual agent strategy, how other agents are assumed to
be behaving is not explicitly defined—thereby preventing the
ability to make complete safety guarantees.

Instead of reasoning about safety on the individual agent
level, the authors in [24] introduce the idea of reasoning
about safety as a property of the collective of agents. In
particular, they introduce the idea of social laws, which
are a set of rules imposed upon all agents in a multi-
agent system to ensure some desirable global behaviors
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like safety or progress [24], [27]. The design of social
laws is intended to achieve the desirable global behavioral
properties in a minimally-restrictive way [24]. The problem
of automatically synthesizing useful social laws for a set of
agents for a general state space, however, has been shown
to be NP-complete [24]. Model checking tools have also
been designed to verify correctness of agent protocols for
multi-agent systems, but these do not solve the protocol
synthesis problem [14], [27]. The Responsibility-Sensitive-
Safety (RSS) framework [23] adopts a similar top-down
philosophy for guaranteeing safety by providing a set of rules
like maintaining distance, yielding, etc, but does not provide
guarantees of agent progress.

Similarly, the Assume-Guarantee framework for au-
tonomous vehicles introduced in [18] dictates all agents
must abide by some behavioral contract where agents make
decisions according to a behavioral profile. With all agents
operating according to the behavioral profile, the interactions
are not necessarily coordinated. In particular, there might
be multiple agents with conflicting goals. The process for
resolving multiple conflicting processes in a local, decen-
tralized manner is addressed in the Drinking Philosopher
problem, which provides a mechanism for resolving conflicts
by defining a local, decentralized algorithm for assigning
precedence among agents [6]. We introduce an agent pro-
tocol that is an adaptation of the Drinking Philosopher
problem. The agent protocol is defined so agents use a
behavioral profile to select an intended action. Additional
constraints specified in the profile, determine when an agent
has precedence in taking its intended action. Unlike [22],
our framework leverages the structure of the driving road
network and takes into account the inertial properties of
agents.

The main contributions of this paper are as follows: 1)
The introduction of a new game paradigm, which we term
the quasi-simultaneous discrete-time multi-agent game, 2)
the definition of an agent protocol that defines local rules
agents must use to select their actions, 3) safety and liveness
proofs when all agents operate according to these local rules
and 4) simulations as proof of concept of the safety and
liveness guarantees.

II. QUASI-SIMULTANEOUS DISCRETE-TIME GAME

We propose a quasi-simultaneous discrete-time game
paradigm, which we motivate by looking at the shortcomings
of more traditional game paradigms. In synchronous games,
all agents in the game are making decisions simultaneously.
Since agents are making decisions in the absence of other
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agent behaviors, it does not capture the sequential nature of
real-life decision making. Turn-based games offer potential
for capturing sequential decision-making, but the turns are
often assigned arbitrarily. The quasi-simultaneous discrete-
time game offers a way to assign turns, but in a turn order
based on the agent states defined with respect to the road
network.

A state associated with a set of variables is an assignment
of values to those variables. A game evolves by a sequence of
state changes. A quasi-simultaneous game has the following
two properties regarding state changes: 1) each agent will
get to take a turn in each time-step of the game and 2)
each agent must make their turn in an order that emerges
from a locally-defined precedence assignment algorithm. We
define a quasi-simultaneous game where all agents act in a
local, decentralized manner as follows G= 〈A,Y ,Act[·],P〉,
where A is the set of all agents in the game, Y is the set of
all variables in the game, ActAg be the set of all possible
actions Ag can take. Finally, P : Y → PolyForest(A), is
the precedence assignment function where PolyForest is an
operator that maps a set to a polyforest graph object. The
polyforest, with its nodes and directed edges, defines the
global turn order (of precedence) of the set of all agents
based on the agent states.

III. SPECIFIC AGENT CLASS

In order to make global guarantees on safety and progress,
we first only consider a single specific class of agents
whose attributes, dynamics, motion-planner, and perception
capabilities are described in more detail in the following
section. Although assuming a single class of agents seems
very restrictive, the work can be easily extended to accommo-
date additional variants of the agent class. These extensions,
however, are beyond the scope of this work.

A. Agent Attributes

Each agent Ag is characterized by a set of variables VAg⊆
Y . We define {IdAg,TcAg,GoalAg} ⊆ VAg where IdAg,
TcAg, and GoalAg are the agent’s ID number, token count
and goal respectively. The token count and ID are defined
in greater depth in Section V-C. Agents are assumed to have
the capability of querying the token counts of neighboring
agents.

In this paper, we only consider car agents such that if Ag∈
A, then VAg includes xAg, yAg, θAg, vAg, namely its absolute
coordinates, heading and velocity. We let SAg denote the set
that contains all possible states of these variables in VAg.
VAg also has parameters: aminAg ∈ Z,amaxAg ∈ Z,vminAg ∈
Z and vmaxAg ∈Z which define the minimum and maximum
accelerations and velocities respectively. The agent control
actions are defined by two parameters: 1) an acceleration
value accAg between aminAg and amaxAg and 2) a steer ma-
neuver γAg ∈{left-turn, right-turn, left-lane
change, right-lane change, straight}.

The discrete agent dynamics works as follows. At a given
state s∈ SAg at time t, for a given control action (accAg,γAg),
the agent first applies the acceleration to update its velocity

s.vAg,t+1 = s.vAg,t + accAg. Once the velocity is applied, the
steer maneuver (if at the proper velocity) is taken and the
agent occupies a set of grid-points, specified in Fig. 1, while
taking its maneuver. The agent state-transition function τAg :
SAg×ActAg→ SAg defines the state an agent will transition
to by taking an action a at a given state sAg and the state
precondition ρAg : SAg→ 2ActAg functions defines the set of
allowable actions at a given state.
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Fig. 1: Shows different grid point occupancy associated
with different discrete agent maneuvers. Note the grid point
occupancy represents a conservative space in which the agent
may occupy when taking the associated maneuver.

During an agent state transition, an agent may, depending
on the maneuver, occupy a set of grid points. Before and
after the state transition, the agent is assumed to occupy only
a single grid point. Fig. 1 shows the grid point occupancy
for different agent maneuvers. The concept of grid point
occupancy is defined as follows:

Definition 3.1 (Grid Point Occupancy): The notion of
grid point occupancy is captured by the definitions of the
following maps for each Ag ∈ A. To define the grid point
an agent is occupying at a given time we use the map:
GAg,t : SAg → 2G, mapping each agent to the single grid
point the agent occupies. By a slight abuse of notation,
we let GAg,t : SAg × ActAg → 2G be a function that maps
each s ∈ SAg and a ∈ ρAg(s) to denote the set of all grid
points that are occupied by the agent Ag when it takes an
allowable action a from state s at the time-step t.

Here we assume that any graph-based planning algorithm
can be used to specify an agent’s motion plan, where the
motion plan is a set of critical points along the graph that
the agent must reach in order to get to its destination.

B. Agent Backup Plan Action

A backup plan is a reserved set of actions an agent is
entitled to execute at any time while being immune to being
at fault for a collision if one occurs. In other words, an agent
will always be able to safely take its backup plan action. We
show if each agent can maintain the ability to safely execute
its own backup plan (i.e. keep a far enough distance behind
a lead agent), the safety of the collective system safety is
guaranteed. The default backup plan, which we refer to as
abp adopted here is that of applying maximal deceleration
until a complete stop is achieved. Note, it may take multiple
time-steps for an agent to come to a complete stop because
of the inertial dynamics of the agent.



C. Limits on Agent Perception

In real-life, agents make decisions based on local in-
formation. We model this locality by defining a region of
grid points around which agents have access to the full
state and intentions of the other agents. We assume agents
have different perception capabilities in different contexts
of the road network. For road segments, the region around
which agents make decisions cannot be arbitrarily defined.
In fact, an agent’s bubble must depend on its state, and the
agent attributes and dynamics of all agents in the game. In
particular, the bubble can be defined as follows:

Definition 3.2 (Bubble): Let Ag with state s0 ∈ SAg. Then
the bubble of Ag with respect to agents of the same type
is written as BAg(s0). The bubble is the minimal region of
space (set of grid points) agents need to have full information
over to guarantee they can make a decision that will preserve
safety under the defined protocol.

The details for the construction of the bubble for an agent
with a particular set of attributes and dynamics can be found
in the Appendix. At intersections, agents are assumed to be
able to see across the intersection when making decisions
about crossing the intersection. More precisely, any Ag must
be able to know about any Ag′ ∈ A that is in the lanes of
oncoming traffic. The computation of the exact region of
perception necessary depends on the agent dynamics.

IV. ROAD NETWORK ENVIRONMENT

Here we introduce the structure of the road network
environment that agents are assumed to be operating on. The
road network is a grid world with additional structure (e.g.
lanes, bundles, road segments, intersections, etc.). The road
network is formalized as follows:

Definition 4.1 (Road Network): A road network R is a
graph R = (G,E) where G is the set of grid points and E
is the set of edges that represent immediate adjacency in
the Cartesian space among grid points. Note that each grid
point g∈G has a set of associated properties P , where P =
{p,d,lo} which denote the Cartesian coordinate, drivability
of the grid point and the set of legal orientations allowed
on the grid point respectively. Note, p ∈ Z2, d ∈ {0,1} and
lo ∈ {north,east,south,west}.

Ssources (Ssinks) are the set of grid points agents can enter
or leave the road network from. Each intersection of the
road network is governed by traffic lights. The road network
is hierarchically decomposed into lanes, bundles and road
segments, where a lane La(g) defines a set of grid points
that contains g and all grid points that form a line going
through g and a bundle Bu(g) is a set of grid points that
make up a set of lanes that are adjacent or equal to the
lane containing g and have the same legal orientation. Each
bundle can be decomposed into a set of road segments RS,
where the intersections are used to partition each bundle into
a set of road segments. These road components can be seen
in Fig.2.

We introduce the following graph definition since it will
be used in the liveness proof.

Definition 4.2 (Road Network Dependency Graph): The
road network dependency graph is a graph Gdep = (RS,E)
where nodes are road segments and a directed edge (rs1,rs2)
denotes that agents on rs1 depends on the clearance of
agents in rs2 to make forward progress.

V. THE AGENT PROTOCOL

The protocol is the set of rules agents use to select which
action to ultimately take at a given time step. According to
the protocol, agents first select an intended action using a
profile. The protocol then defines additional rules that an
agent uses to determine whether it has priority to take its
intended action, and if not, which alternative, less-optimal
actions it is allowed to take. The protocol is defined in a way
that 1) scales well in the number of agents 2) is interpretable
so there is a consistent and transparent way agents make
their decisions 3) ensures safety and progress of all agents.
In this section, we introduce the components that form the
agent protocol that make it such that all these properties are
satisfied.

A. Agent Precedence Assignment

The definition of the quasi-simultaneous game requires
agents to locally assign precedence, i.e. have a set of rules
to define how to establish which agents have higher, lower,
equal or incomparable precedence to it.

Thus, the first element of the agent protocol is defining
the agents’ local precedence assignment algorithm so each
agent knows its turn order relative to neighboring agents. Our
precedence assignment algorithm is motivated by capturing
how precedence among agents is generally established in
real-life scenarios on a road network. In particular, since
agents are designed to move in the forward direction, we
aim to capture the natural inclination of agents to react to
the actions of agents visibly ahead of it.

Before presenting the precedence assignment rules, we
must introduce a few definitions. Let us define: projBlong :
A→ Z, which is restricted to only be defined on the bundle
B. In other words, projBlong(Ag) is the mapping from an agent
(and its state) to its scalar projection onto the longitudinal
axis of the bundle B the agent Ag is in. If projBlong(Ag′) <
projBlong(Ag), then the agent Ag′ is behind Ag in B.

The following rules can be used to define the precedence
relation among agents Ag and Ag′.

1) Local Precedence Assignment Rules:
1) If projBlong(Ag′)< projBlong(Ag) and Bu(Ag′) = Bu(Ag),

then Ag′ ≺ Ag, i.e. if agents are in the same bundle
and Ag is longitudinally ahead of Ag′, Ag has higher
precedence than Ag′.

2) If projBlong(Ag′) = projBlong(Ag) and Bu(Ag′) = Bu(Ag),
then Ag ∼ Ag′ and we say Ag and Ag′ are equivalent
in precedence.

3) If Ag′ and Ag are not in the same bundle, then the two
agents are incomparable.

Each agent Ag∈A only assigns precedence according to the
above rules locally to agents within its local region. Thus, we
must show if all agents locally assign precedence according



to these rules, a globally-consistent turn precedence among
all agents is established. The linear ordering induced by these
local rules are used to prove this. The reader is referred to
the Appendix for the full proof.
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Fig. 2: Rules for precedence assignment.

Even when this turn-order is established, there is still
some ambiguity as to which agents have precedence. The
ambiguity is resolved through the conflict-cluster resolution,
introduced in Section V-C.

B. Behavioral Profile

The way in which agents select actions is the fundamental
role of the agent protocol. The behavioral profile serves the
purpose of defining which action an agent intends to take at
a given time-step t. We define a specific assume-guarantee
profile with the mathematical properties defined in [18]. In
particular, we define a set of ten different specifications
(rules) and place a hierarchy of importance (ordering) on
these rules.

Fig. 3: Assume-guarantee profile that shows ordering of
specifications, where specifications on the same tier are
incomparable to one another and Tier 1 has highest priority.

Each of the specifications is associated with an oracle that
evaluates whether or not an agent taking an action a satisfies
the specification. The reader is referred to the Appendix
for the precise oracle definitions. The consistent-evaluating
function, defined on this agent profile, will evaluate actions
based on which subset of specifications they satisfy–giving
priority to actions that satisfy the highest number of highest-
valued specifications, as described in [18]. The action with
the highest value is then selected as the action the agent
intends to takes.

For this work, the agent profile defined in Fig. 3 is
used to define both the agent’s intended action ai and
best straight action ast defined in Definition 5.4. Since
an agent would never propose a lane-change action if
OAg,t,dynamic safety(s,a,u) were included in the profile, it is
not included in the selection of the intended action ai, but
rather evaluated later downstream in the protocol.

C. Conflict-Cluster Resolution

At every time-step t, each agent will know when to take
its turn based on its local precedence assignment algorithm.
Before taking its turn, the agent will have selected an
intended action ai using the Agent profile. When it is the
agent’s turn to select an action, it must choose whether or
not to take it’s intended action ai. When the intended actions
of multiple agents conflict, the conflict-cluster resolution is a
token-based querying method used to help agents determine
which agent has priority in taking its action.

Under the assumption agents have access to the intentions
of other agents within a local region as defined in Section
III-C, agents can use the following criteria to define when it
conflicts with another agent.

Definition 5.1 (Agent-Action Conflict): Let us consider an
agent Ag is currently at state s ∈ SAg and wants to take
action a and an agent Ag′ at state s′ ∈ SAg′ wants to take
action a′. We write an agent-action conflict exists (Ag,s,a)†
(Ag′,s′,a′), if each of the agents taking their respective
actions will cause them to overlap in occupancy grid points
or end up in a configuration where the agent behind does
not have a valid safe backup plan action.

In the case that an agent’s action is in conflict with another
agents’ action, the agent must send a conflict request that
ultimately serves as a bid the agent is making to take its
intended action. It cannot, however, send requests to just any
agent (e.g. agents in front of it). The following criteria are
used to determine the properties that must hold in order for
an agent Ag to send a conflict request to agent Ag′: 1) Ag’s
intended action ai is a lane-change action, 2) Ag′ ∈BAg(s),
i.e. Ag′ is in agent Ag’s bubble, 3) Ag′ - Ag, i.e. Ag has
equivalent or higher precedence than Ag′, 4) Ag and Ag′

have the same heading, 5) (Ag,ai)†(Ag′,a′i): agents intended
actions are in conflict with one another, and 6) FAg(u,ai) =
F, where FAg(u,ai) is the max-yielding-not enough flag and
is defined below.

Definition 5.2 (maximum-yielding-not-enough flag): The
maximum-yielding-not-enough flag FAg : U × ActAg → B
is set to T when Ag is in a configuration where if Ag did
a lane-change, Ag would still violate the safety of Ag′’s
backup plan action even if Ag’ applied its own backup plan
action.
We note that if FAg(u,ai) is set, Ag cannot send a conflict
request by the last condition. Even though Ag does not send a
request, it must use the information that the flag has been set
in the agent’s Action Selection Strategy defined in Section
V-D. After a complete exchange of conflict requests, each
agent will be a part of a cluster of agents that define the set
of agents it is ultimately bidding for its priority (to take its



intended action) over. These clusters of agents are defined
as follows:

Definition 5.3 (Conflict Cluster): A conflict cluster
for an agent Ag is defined as CAg = {Ag′ ∈ A |
Ag send Ag′ or Ag′ send Ag}, where Ag send Ag′

implies Ag has sent a conflict request to Ag′. An agents’
conflict cluster defines the set of agents in its bubble that
an agent is in conflict with.

Fig. 4 shows an example scenario and each agents’ conflict
clusters. Once the conflict requests have been sent and an
agent can thereby identify the other agents in its conflict
cluster, it needs to establish whether or not the conflict
resolution has resolved in it’s favor.
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Fig. 4: An example scenario with agents in a given config-
uration of agents, their intended actions and their respective
conflict clusters.

Once an agent has determined which agents are in its
conflict cluster, it must determine whether or not it has the
priority to take its intended action. The token resolution
scheme is the way in which agents determine whether they
have precedence.

The token resolution strategy must be designed to be fair,
meaning each agent will always eventually wins their conflict
resolution. The resolution is therefore based on the agents’
token counts Tc, which is updated by agents to represent
how many times an agent has been unable to take a forward
progress action thus far.

The token count updates according to the agent’s cho-
sen action. In particular, if Ag selects action a: if
Oforward progress(s,a,u) = T, the the token count resets to 0,
otherwise it increases by 1.

Then, a fair strategy would be to make it so that the agent
with the highest amount of tokens wins in its own conflict
cluster. Thus, we define a token resolution indicator variable
for each Ag as WAg ∈ B, indicating whether or not the agent
has won in its conflict cluster. The conflict cluster resolution
indicator variable WAg evaluates to T if Ag has the highest
amount of tokens in its conflict cluster, where ties are broken
via agent ID comparison.

D. Action Selection Strategy

The Action Selection Strategy is a decision tree that
defines whether or not an agent is allowed to take its intended
action ai and if it is not, which alternative action it should
take. In the case where an agent is not allowed to take ai, the

agent is restricted to take either: the best straight action ast ,
which is defined in Definition 5.4, or its backup plan action
abp, where the best straight action is defined as follows:

Definition 5.4 (Best Straight Action): Let us consider Ag
and its associated action set ρAg(s). The best straight action
is the action a ∈ ρAg(s) that is the highest-ranked action
(according to the profile defined in Section V-B), among the
set of all actions for which γAg = straight.

The decision tree branches are defined based on the fol-
lowing five conditions: 1) ai, the agent’s and other agents’ (in
its bubble) intended actions 2) Ag’s role in conflict request
cluster being a) a conflict request sender, b) a conflict request
receiver, c) both a sender and a receiver, d) neither sender
or receiver, 3) the agent’s conflict cluster resolution WAg, 4)
evaluation of OAg,t,dynamic safety(s,ai,u) and 5) FAg(u,ai) for
Ag is raised, where FAg(u,ai) is the maximal-yielding-not-
enough flag defined in Section V-C.

If an agent receives a conflict cluster request and loses
their conflict cluster resolution, according to the action
selection strategy, the agent must take its backup plan action
abp. An agent is only allowed to take a lane-change action
when the agent is a winner of its conflict cluster resolution,
FAg = F and the dynamic safety oracle evaluates to true (i.e.
OAg,t,dynamic safety(s,ai,u) = T). Finally, an agent that loses in
its conflict cluster but did not send requests must take ast.
A figure showing the full decision-tree logic for selecting
actions can be found in the Appendix.

The agent protocol, as described in the above sections, has
been designed in a way such that if all agents are selecting
actions via the protocol, we can provide formal guarantees
on safety and liveness. Theses safety and liveness proofs are
given in the following sections.

VI. FORMAL GUARANTEES

Before introducing the formal guarantees of safety and
liveness and their respective proofs, we first make explicit the
assumptions that must hold on agents and the road network.

1) Each Ag ∈ A has access to the traffic light states.
2) There is no communication error in the conflict requests,

token count queries and the agent intention signals.
3) All intersections in the road network R are governed by

traffic lights.
4) The traffic lights are designed to coordinate traffic such

that if agents respect the traffic light rules, they will not
collide.

5) Agents follow the agent dynamics defined in Section
III-A.

6) For t = 0, ∀Ag ∈ A in the quasi-simultaneous game is
initialized to be located on a distinct grid point on the
road network and have a safe backup plan action abp
such that SAg,bp(s,u) = T.

7) The traffic lights are red a window of time ∆ttl such
that tmin < ∆ttl < ∞, where tmin is defined so agents
are slowed down long enough so agents that have been
waiting can take a lane-change action. More details can
be found in the Appendix.



8) The static obstacles are not on any grid point g where
g.d = 1.

9) Each Ag treats its respective goal Ag.g as a static
obstacle.

10) Bundles in the road network R have no more than 2
lanes.

11) All intersections in the road network R are governed
by traffic lights.

A. Safety Guarantee

Safety is guaranteed when agents do not collide with one
another. An agent causes collision when it takes an action
that satisfies the following condition.

Definition 6.1 (Collision): An agent Ag that takes an ac-
tion a∈ActAg will cause collision if the grid point occupancy
of Ag ever overlaps with the grid point occupancy of another
agent Ag′ or a static obstacle Ost.

A strategy where agents simply take actions that avoid
collision in the current time-step is insufficient for guaran-
teeing safety because of the inertial properties of the agent
dynamics. The agent protocol has therefore been defined so
an agent also avoids violating the safety of its own and any
other agent’s backup plan action abp defined in Section III-
B. An agent’s backup plan action abp is evaluated to be safe
when the following conditions hold:

Definition 6.2: [Safety of a Backup Plan Action] Let us
define the safety of an agent’s backup plan action SAg,bp :
U = B, where B = {T,F} is an indicator variable that
determines whether an agent’s backup plan action is safe
or not. It is defined as: SAg,bp(u) = ∧o∈Oo(s,abp,u) where
the set O is the set of all oracles in the top three tiers of the
agent profile defined in Section V-B.

An agent Ag takes an action a ∈ ActAg that violates the
safety backup plan action of another agent Ag′ when the
following conditions hold:

Definition 6.3 (Safety Backup Plan Violation Action):
Let us consider an agent Ag that is taking an action
a ∈ ActAg, and another agent Ag′. The action (Ag,a)⊥Ag′,
i.e. agent Ag violates the safety backup plan of an agent
Ag′ when by taking an action a, then SAg′,bp(u

′) = F, where
u′ is the state of the game after Ag has taken its action. In
other words, by taking the action, the agent has ended in a
state such that it violates the safety of its own or another
agents’ backup plan action.
The safety proof is based on the premise that all agents
only take actions that do not collide with other agents
and maintain the invariance of the safety of their own and
other agents’ safety backup plan actions. The safety theorem
statement and the proof sketch are as follows.

We can treat the quasi-simultaneous game as a program,
where each of the agents are separate concurrent processes.
A safety property for a program has the form P ⇒ �Q,
where P and Q are immediate assertions. This means if the
program starts with P true, then Q is always true throughout
its execution [15].

Theorem 6.1 (Safety Guarantee): Given all agents Ag ∈
A in the quasi-simultaneous game select actions in accor-

dance to the Agent Protocol specified in Section V, then we
can show the safety property P⇒ �Q, where the assertion
P is an assertion that the state of the game is such that
∀Ag,SAg,bp(s,u)=T, i.e. each agent has a backup plan action
that is safe, as defined in Section 6.2. We denote Pt as the
assertion over the state of the game at the beginning of the
time-step t, before agents take their respective actions. Qt
is the assertion that the agents never occupy the same grid
point when taking their respective action at time step t.
The following is a proof sketch.

Proof: To prove an assertion of this form, we need to
find an invariant assertion I for which i) P⇒ I ii) I ⇒ �I
and iii) I ⇒ Q hold. We define I to be the assertion that
holds on the actions that agents select to take at a time-step.
We denote It to be the assertion on the actions agents take at
time t such that ∀Ag, Ag takes a∈ ActAg where 1) it does not
collide with other agents and 2) it does not violate the safety
of other agents’ back up plan actions (i.e. ∀Ag,SAg,bp(u′)=T
where s′ = τAg(s,a), and u′ is the corresponding global state
of the game after each Ag has taken its respective action a).

We can prove P⇒�Q by showing the following:
1) Pt ⇒ It . This is equivalent to showing that if all agents

are in a state where P is satisfied at time t, then all
agents will take actions at time t where the I holds.
This can be proven by showing agents will take actions
that satisfy the conditions of I as long as they are begin
a state where all agents have a safe backup action and
they select actions according to the protocol.

2) I⇒�I. If agents take actions such that at time t such
that the assertion It holds, then by the definition of the
assertion I, agents will end up in a state where at time
t+1, assertion P holds, meaning It⇒ Pt+1. Since Pt+1⇒
It+1 from 1, we get I⇒�I.

3) I ⇒ Q. If all agents take actions according to the
assertions in I, then collisions will not occur. This
follows from the definition of I.

The reader is referred to the Appendix for a full proof.
Proof of safety alone is not sufficient reason to argue for
the effectiveness of the protocol, as all agents could simply
stop for all time and safety would be guaranteed. A liveness
guarantee, i.e. proof that all agents will eventually make it
to their final destination, is critical. In the following section,
we present liveness guarantees.

B. Liveness Guarantees

A liveness property asserts that program execution even-
tually reaches some desirable state [15]. In this paper, we
describe the eventual desirable state for each agent is to reach
their respective final destinations. Unfortunately, deadlock
occurs when agents indefinitely wait for resources held by
other agents [19]. Since the Manhattan grid road network
has loops, agents can enter a configuration in which each
agent in the loop is indefinitely waiting for a resource held
by another agent. When the density of agents in the road
network is high enough, deadlocks along these loops will



occur. We can therefore guarantee liveness only when certain
assumptions hold on the density of the road network.

Definition 6.4 (Sparse Traffic Conditions): Let M denote
the number of grid points in the smallest loop (defined by
legal orientation) of the road network, not including grid
points g ∈Sintersections. The sparsity condition must be such
that N < M− 1, where N is the number of agents in the
road network. The number of agents has to be such that
the smallest loop does not become completely saturated, in
which deadlock would occur. Note, these sparsity conditions
are conservative because it is a bound defined by the worst
possible assignment of agents and their destinations.

Now, we introduce the liveness guarantees under these
sparse traffic conditions. The proof of liveness is based on
the fact that 1) agent profile include progress specifications
and 2) conflict precedence is resolved by giving priority to
the agent that has waited the longest time (a quantity that is
reflected by token counts).

Theorem 6.2 (Liveness Under Sparse Traffic Conditions):
Under the Sparse Traffic Assumption given by Definition
6.4 and given all agents Ag ∈ A in the quasi-simultaneous
game select actions in accordance to the Agent Protocol
specified in Section V, liveness is guaranteed, i.e. all Ag∈A
will always eventually reach their respective goals.

The following is a proof sketch.
Proof:

1) The invariance of a no-deadlock state follows from the
sparsity assumption and the invariance of safety (no
collision) follows from the safety proof.

2) Inductive arguments related to control flow are used to
show that all Ag will always eventually take a ∈ ActAg
where Oforward progress(s,a,u) = T.

a) Let us consider a road segment r ∈ RS that con-
tains grid point(s) g ∈Ssinks meaning that the road
segment contains grid points with sink nodes. In-
ductive arguments based on the agents’ longitudinal
distance to destination grid points are used to show
every Ag ∈ r will be able to always eventually take
a ∈ ActAg for which the forward progress oracle
Oforward progress(s,a,u) = T.

b) Let us consider a road segment rs∈RS. Let us assume
∀rs ∈ RS,∃(rs,rs′) ∈Gdep meaning that the clearance
of rs depends on the clearance of all rs′. Inductive
arguments based on agents’ longitudinal distance to
the front of the intersection show any Ag on rs will
always eventually take a ∈ ActAg where the forward
progress oracle Oforward progress(s,a,u) = T.

c) For any R where the dependency graph Gdep (as
defined in Definition 4.2) is a directed-acyclic-graph
(DAG), inductive arguments based on the linear or-
dering of road segments rs∈Gdep, combined with the
arguments 2a-2b, can be used to prove all Ag ∈ A
will always eventually take a ∈ ActAg for which the
forward progress oracle Oforward progress(s,a,u) = T.

d) When the graph Gdep is cyclic, the Sparsity Assump-
tion 6.4 allows for similar induction arguments in 2c

to apply.
3) By the above inductive arguments and the definition

of Oforward progress(s,a,u), all Ag will always eventually
take actions that allow them to make progress towards
their respective destinations.

The reader is referred to the Appendix for a full proof.

VII. SIMULATION RESULTS

In order to streamline discrete-time multi-agent simu-
lations, we have built a traffic game simulation platform
called Road Scenario Emulator (RoSE). We use RoSE to
generate different game scenarios and simulate how agents
will all behave if they each follow the agent strategy protocol
introduced in this paper.

Fig. 5: City blocks map environment.

We simulate the game with randomized initialization of
spawning agents at the source nodes for three different road
network environments: 1) the straight road segment, 2) small
city blocks grid and 3) large city blocks grid. A snapshot of
a small city blocks grid simulation is shown in Fig. 5.

The agent attributes in this simulation are as follows:
vmin = 0, vmax = 3, amin = −1, and amax = 1. For each
road network environment, we simulate the game 100 times
for t = 250 time-steps. During each time-step, agents will
spontaneously spawn with some defined probability p at the
source nodes and are randomly assigned a sink node as their
destination. Agents that make it to their destinations exit
the map. For all game simulation trials, collision does not
occur. Although liveness is only guaranteed in sparse traffic
conditions, we simulate for a number of agents N > M− 1
specified in the sparsity condition and agents do not enter a
deadlock state. In particular, over the 100 trials for each of
the maps (straight, small and large city blocks), on average
77%, 36% and 43% made it to their respective destinations
on the respective maps by the end of the 250 time-steps.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel paradigm for
designing safety-critical decision-making modules for agents
whose behavior is extremely complex and highly-coupled
with other agents. The main distinction of our proposed
architecture from the existing literature, is the shift from
thinking of each agents as separate, individual entities, to



agents as a collective where all all agents adopt a common
local, decentralized protocol. The protocol defines the agent
attributes, the region it must reason over (i.e. the bubble),
how the agent chooses its intended agent, and how it ul-
timately selects which action to take. With this protocol,
we are able to formally guarantee specifications safety and
liveness (under sparse traffic conditions) for all agents. We
validate the safety and liveness guarantees in a randomized
simulation environment.

The current work still lacks 1) liveness guarantees in all
scenarios, 2) robustness to imperfect sensory information and
3) does not account for other agent types like pedestrians
and cyclists. Future work on modifying the agent strategy
architecture to prevent the occurrence of the loop deadlock
introduced in Section VI-B from occurring. Additionally, the
architecture must be modified in a way to effectively accom-
modate impartial and imperfect information. We also hope to
accommodate a diverse, heterogenous set of car agents and
also other agent types like pedestrians and cyclists. Although
the work needs to be extended to make more applicable to
real-life systems, we believe this work is a first step towards
defining a comprehensive method for guaranteeing safety and
liveness for all agents in an extremely dynamic and complex
environment.
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A. Road Network

The following defines the set of properties that grid points
can have.

1) Grid Point Properties: The set of properties P =
{p,d, lo} of each grid point g ∈ G. p ∈ Z2 denotes the
Cartesian coordinate of the grid point, d ∈ {0,1}, which is an
indicator variale that defines whether or not the grid point is
drivable, lo is the legal orientation, where the legal orienta-
tion is an element of the set {north,east,south,west}.
The set lo may be empty when the grid point is not drivable.
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Fig. 6: Road network decomposition where each box repre-
sents a grid point.

The following are sets of labeled grid points on the road
network map.

1) Sintersection: A set of grid points that contains all grid
points with more than one legal orientation.

2) Straffic light: A set of grid points that represent the traffic
light states in the vertical or horizontal direction via its
color (for every intersection).

The road network is hierarchically decomposed into lanes
and bundles, which are defined informally as follows:

• Lanes: Let lane La(g) denote a set of grid points that
contains all grid points that are in the same ‘lane’ as
g. La(g) = {g′|projx(g

′.p) = projx(g.p) or projy(g.p) =
projy(g.p),
g′.φl = g.φl ,g.drivable= g′.drivable = 1}.

• Bundles: First, we define the set of adjacent lanes to
lane La(g) as adj(La(g)) = {La(g′) | ∃e = (ĝ, ĝ′) ∈
R s.t. (ĝ ∈ La(g), ĝ′ ∈ La(g′)) and ĝ.φl = ĝ′.φl}. This
represents the set of lanes La(g) in the same direction
that the lane is adjacent to. Let N(g) = adj(La(g)). Let
bundle Bu(g) denote a set of lanes that are all connected
to one another and is defined recursively as follows:

Bu(g) =

{
La(g)∪N(g) if N(g) 6= /0
La(g) otherwise.

For clarity of the road network decomposition, refer to
Fig. 2. With slight abuse of notation, we let La(Ag) refer
to the lane ID associated with the grid point (s.xAg,s.yAg),
and Bu(Ag) mean the bundle ID associated with the lane
La(Ag).

B. Agent Backup Plan Action

Definition 0.1 (Backup Plan Action): The backup plan
action abp is a control action where a = amin and when
applying amin causes the agent’s velocity to go below 0,
a = max(amin,−s.vAg) and γAg = straight.

C. Bubble Construction

In order to define the bubble for the agent dynamics
specified in Section III-A, we present some preliminary
definitions. We first introduce the backup plan node set
(which is defined recursively) as follows:

Definition 0.2 (Backup Plan Node Set): Let Ag ∈ A and
s0 ∈ SAg. The backup plan grid point set BPAg(s0) is all
the grid points agent Ag occupies as it applies maximum
deceleration to come to a complete stop.

BPAg(s0)=

{
GAg(s0,abp)∪BPAg(τAg(s0,abp)) if τAg(s0,abp).v 6= 0
GAg(τ(s0,abp)) otherwise.

where amin is the agent’s action of applying maximal de-
celeration while keeping the steering wheel at the neutral
position.

Definition 0.3 (Forward/Backward Reachable States):
The (1-step) forward reachable state set of agent Ag
denoted RAg(s0) represents the set of all states reachable
by Ag from the state s0. The forward reachable set is
defined as RAg(s0) , {s ∈ SAg | ∃a ∈ ρAg(s0).s = τ(s0,a)}.
Similarly, we define the (1-step) backward reachable
state set R−1

Ag (s0) as the set of all states from
which the state s0 can be reached by Ag. Formally,
R−1

Ag (s0), {s ∈ SAg | ∃s ∈ SAg.∃a ∈ ρAg(s).s0 = τ(s,a)}.
Definition 0.4 (Forward Reachable Nodes): We denote

by G R
Ag(s0) the forward reachable node set, namely, the

set of all grid points that can be occupied upon taking the
actions that brings the agent Ag from its current state s0 to
a state in RAg(s0). Specifically,

G R
Ag(s0),

⋃
a∈ρAg(s0)

GAg(s0,a)

This set represents all the possible grid points that can be
occupied by an agent in the next time step.

Definition 0.5 (Occupancy Preimage): For n ∈ G, where
G are the nodes in the road network graph R, the occupancy
preimage G R−1

Ag (n) is the set of states of agent Ag from which
there is an action that causes n to be occupied in the next
time step. Formally,

G R−1

Ag (n) = {s ∈ SAg | ∃a ∈ ρAg(s).n ∈ GAg(s,a)}
In the next section, we define several different sets of grid

points that are defined to represent the locations where two
agents may possibly interfere with one another, which are
shown in Fig. 7. The bubble is defined to be the union of
these sets of grid points.



Fig. 7: Bubble if all Ag ∈ A have the Agent Dynamics
specified in Section III-A. Construction of this set defined
in the Appendix.

We begin by considering the ego agent whose bubble we
are defining. In particular, let us again consider an agent Ag
at state s0 ∈ SAg. The corresponding grid point set G R

Ag(s0)
is shown in the left-most figure in Fig. 7. The grid points an
agent occupies when executing its backup plan from a state
in the agent’s forward reachable set RAg(s0) is given by:

G R,BP
Ag (s0),

⋃
s∈RAg(s0)

BPAg(s)

These grid points are shown in the second from the left sub-
figure in Fig. 7. The set-valued map

ZAg(s0), G R
Ag(s0)∪G R,BP

Ag (s0).

represents all the grid points an agent can possibly reach in
the next state or in the following time step were it to execute
its backup plan. Let Ag′ ∈ A and Ag′ 6= Ag. The set:

S R
Ag′(Ag,s0),

⋃
n∈ZAg(s0)

G R−1

Ag′ (n)

defines the set of all states in which another agent Ag′ can
reach any grid point in the other agents’ forward reachable
grid points ZAg(s0). Let us define the grid point projection
of these states as

G R
Ag′(Ag,s0), {GAg′(s) | s ∈S R

Ag′(Ag,s0)}.

These grid points are defined in the third from the left
subfigure in Fig. 7.

The bubble also needs to include any state where an agent
Ag′ where the agent has so much momentum it cannot stop
fast enough to avoid collision with the agent Ag. To define
the set of states from which this might occur, let us define
the set:

S BP
Ag′ (Ag,s0) = {s ∈ SAg′ | BPAg′(s)∩ZAg(s0) 6= /0}.

If another agent Ag′ occupies a state in this set, then
execution of that agent’s backup plan will cause it to intersect
with the set of grid points that are in agents set ZAg(s0). Let

S R,BP
Ag′ (Ag,s0) =

⋃
s∈S BP

Ag′ (Ag)

R−1
Ag′(s).

This is the set of all states backward reachable to the states
in S BP

Ag′(Ag,s0). If an agent Ag′ occupies any of these states,
it will end up in a state where its backup plan will intersect
with agent Ag’s potential grid points that are defined in ZAg.
We project this set of states to a set of grid points as

G R,BP
Ag′ (Ag,s0) = {GAg′(s) | s ∈S BP

Ag′ (Ag,s0)}.

Note, this set of grid points is shown in the right-most
subfigure in Fig. 7. The bubble is then defined as the union
of all the sets of grid points specified above.

Definition 0.6 (Bubble): Let us consider an agent Ag with
state s0 ∈ SAg and agent Ag′ be another agent. Then the
bubble of Ag with respect to agents of the same type as Ag′

is given by

BAg/Ag′(s0),ZAg(s0)∪G R
Ag′(Ag,s0)∪G R,BP

Ag′ (Ag,s0).

Note that under almost all circumstances, we should have

ZAg(s0)⊆ G R
Ag′(Ag,s0)⊆ G R,BP

Ag′ (Ag,s0)

so BAg(s0) is simply equal to G R,BP
Ag′ (Ag,s0). This holds true

for the abstract dynamics we consider in this paper. This
means the bubble contains any grid points in which another
agent Ag′ occupying those grid points can interfere (via its
own forward reachable states or the backup plan it would
use in any of its forward reachable states) with at least one
of agent Ag’s next possible actions and the backup plan it
would use if it were to take any one of those next actions.

D. Global Precedence Consistency

Lemma 0.1: If all agents assign precedence according to
the local precedence assignment rules to agents in their
respective bubbles, then the precedence relations will induce
a polyforest on A/ ∼, where S/ ∼ defines the quotient set
of a set S.

Proof: Suppose there is a cycle C in A/ ∼. For each
of the equivalent classes in C (C must have at least 2 to be
a cycle), choose a representative from A to form a set RC.
Let Ag ∈ RC be one of these representatives. Applying the
second local precedence assignment rule inductively, we can
see that all agents in RC must be from Ag’s bundle. By the
first local precedence assignment rule, any C edge must be
from an agent with lower projected value to one with a higher
projected value in this bundle. Since these values are totally
ordered (being integers), they must be the same. This implies
that C only has one equivalence class, a contradiction.
The acyclicity of the polyforest structure implies the con-
sistency of local agent precedence assignments. Note, the
local precedence assignment algorithm establishes the order
in which agents are taking turns.

E. Oracle Definitions

1) OAg,t,unprotected left-turn safety(s,a,u) returns T when the
action a from the state s will result in the complete
execution of a safe, unprotected left-turn (invariant to
agent precedence). Note, an unprotected left turn spans
over multiple time-steps. The oracle will return T if Ag
has been waiting to take left-turn (while traffic light is
green), traffic light turns red, and no agents in oncoming
lanes.

2) Ostatic safety(s,a,u) returns T when the action a from
state s will not cause the agent to collide with a static
obstacle or end up in a state where the agent’s safety
backup plan abp with respect to the static obstacle is no
longer safe.



3) Otraffic light law(s,a,u) returns T if the action a from the
state s satisfies the traffic light laws (not crossing into
intersection when red. It also requires that Ag be able to
take abp from s′ = τAg(s,a) and not violate the traffic-
light law.

4) Otraffic orientation law(s,a,u) returns T if the action a from
the state s follows the legal road orientation.

5) Otraffic intersection clearance law(s,a,u) returns T if the ac-
tion causes the agent to enter the intersection and not
leave it when the traffic light turns red. Returns T if
the action causes the agent to end in a state where its
backup plan action will cause the agent to enter the
intersection and not be able to leave it when the traffic
light turns red.

6) Otraffic intersection lane change law(s,a,u) returns T if the
action is such that
γAg = {left-lane change,right-lane change}
and the agent either begins in an intersection or ends
up in the intersection after taking the action.

7) Omaintains progress(s,a,u) returns T if the action a from
the state s stays the same distance to its goal.

F. Action Selection Strategy
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Fig. 8: Agent action selection strategy.

G. Safety Lemmas

In the following lemma, we show that an agent cannot send
(or receive) a conflict request to (from) an agent outside its
bubble.

Lemma 0.2: Let us consider agent Ag with state s and
agent Ag′ at state s′. Ag send Ag′⇒ Ag ∈BAg′(s

′).
Proof: If A send B this means that all of the condi-

tions specified in Section 5.1, particularly that (A,ai)†(B,a′i).
This condition is only valid if projGs∈GF,B(B,A) or projGs∈
GF,BP(B,A). Membership of Agent A’s state in either of these
sets implies A ∈B(B).

The following lemma follows from the lemma above.
Lemma 0.3: At most one agent will win in each agent’s

conflict cluster.
Proof: W.l.o.g. let us consider an agent Ag and its

respective conflict cluster C (Ag). It follows from Lemma
0.2 that ∀Ag′, s.t. Ag send Ag′Ag′ ∈ BAg(s) and Ag ∈
BAg′(s′). It also follows that ∀Ag′ s.t. ,Ag send Ag′,Ag∈

BAg′(s
′) and Ag′ ∈BAg(s). This means an agent has access

to all token counts and IDs of all agents in its conflict cluster,
and all agents in its conflict cluster have access to the agent’s
token count and ID. The conflict resolution implies that all
agent edges are incident to the winning agent, where edges
point to the agent they cede to. This implies that at most
one agent can be the winner of each cluster. Less than one
winner (per conflict cluster) will occur when an agent that
is in the intersection of more than one conflict cluster wins.

The following lemma states that if all Ag∈A are following
the Agent Protocol, an agent Ag will not take an action that
will cause it to 1) collide with or 2) violate the safety backup
plan of another agent outside its bubble BAg(s).

Lemma 0.4: If Ag is following the Agent Protocol, and
SAg,bp(u) = T, Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1) GAg(s,a)∩
(∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S, ¬((Ag,a)⊥Ag′),
where the set S, {Ag′|Ag′ /∈BAg(s)∧((Ag′∼Ag)∨(Ag′≺
Ag)∨ (Ag≺ Ag’))}.

Proof: This follows from the definition of the agent
bubble, whose construction is defined in -C.

The following lemma states that an agent Ag following the
Agent Protocol will not take an action for which it violates
the safety of its own backup plan.

Lemma 0.5: If Ag is following the Agent Protocol,
and SAg,bp(u) = T, Ag will only choose an action a ∈
ActAg for which the following condition holds: ∀Ag′ ∈ S,
¬((Ag,a)⊥Ag′), where S = {Ag}.

Proof: We prove this by using specific definition of
elements in the Agent Protocol.

1) Let us first show that any action a∈ ActAg that Ag takes
will satisfy the oracles in the top two tiers (safety and
traffic rules) of Ag’s profile defined in Section. V-B.

a) According to the Action Selection Strategy defined
in Section V-D, Ag will choose one of three actions:
the agent’s intended action ai, the best straight action
ast , or its backup plan action abp.

b) Let us consider the actions ai and ast .
i) Both ai and ast are selected via the Agent Pro-

file and consistent-function evaluator defined in
Section V-B.

ii) Since SAg,bp(u) = T, the agent will have at least
one action (abp) for which the top two tiers of
specifications are satisfied.

iii) By definition of the Agent Profile and the consis-
tent evaluator function, if SAg,bp(u)=T, the safety
backup plan action abp will always be chosen over
an action where any of the specifications in the
top two tiers of the profile are not satisfied.

iv) By 1(b)ii and 1(b)iii, Ag will have a ∈ ActAg and
will choose an action for which the top two tiers
of the Agent Profile are satisfied and thus ai and
ast are actions where all oracles in the top two
tiers of the profile are satisfied.



c) Let us consider the action abp.
i) This follows from the assumption that SAg,bp(u)=
T and the definition of SAg,bp(u).

2) If the oracles in the top two tiers are satisfied by an
action a, by the definition of the oracles in Section V-
B, this implies that the action a will take Ag to a state
s′ and the system will be in a new global state u′ where
SAg,bp(u′) = T.

3) SAg,bp(u′) = T means Ag will end up in a state
where abp will be an action that satisfies traffic rules,
avoids inevitable collision with static obstacles, and
¬((Ag,ai)⊥Ag).

The following lemma states that if all Ag∈A are following
the Agent Protocol, any agent Ag will not take an action for
which it collides with or violates the safety backup plan of
any agent with higher precedence.

Lemma 0.6: If Ag is following the Agent Protocol, and
SAg,bp(u) = T, Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1) GAg(s,a)∩
(∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S, ¬((Ag,a)⊥Ag′),
where the set S , {Ag′|Ag ≺ Ag′}, i.e. agents with higher
precedence than Ag.

Proof: We prove this by using arguments based on
the definition of precedence, the Agent Protocol, and Agent
Dynamics.

1) Let us first consider all Ag′ where Ag≺Ag′ and Ag′ /∈
BAg(s).

a) Proof by Lemma 0.4.
2) Now, let us consider all Ag′ where Ag≺Ag′ and Ag′ ∈

BAg(s).
3) According to Lemma 0.5, Ag will only take an action

that satisfies all oracles in the top two tiers, including
Odynamic safety(s,a,u).

4) Since a is such that Odynamic safety(s,a,u) = T, by defini-
tion of the oracle, Ag will not cause collision with any
Ag′ ∈BAg(s).

5) For any Ag ≺ Ag′, where Ag′ has higher precedence
than Ag, then projlong(Ag) < projlong(Ag′), i.e. Ag′ is
longitudinally ahead of Ag.

6) In order for (Ag,a)⊥Ag′, the action a would have to
be such that s f = τAg(s,a), and La(s f ) = La(s′) and
projlong(Ag) > projlong(Ag′), where Ag is directly in
front of Ag′.

7) Because of the agent dynamics defined in Section III-
A, any a such that (Ag,a)⊥Ag′ will require G (Ag,a)∩
G (Ag′) 6= /0.

8) Thus, any such action a will not satisfy the oracle
Odynamic safety(s,a,u).

9) Since SAg,bp(u) = T, by Assumption 6 in Section VI,
the agent will have at least one action abp for which
Odynamic safety(s,a,u) = T.

10) Since the agent will only choose an action for which
Odynamic safety(s,a,u) = T and it always has at least one
action abp that satisfies the oracle, the agent will always
choose an action for which Odynamic safety(s,a,u)=T and

thus will take an action such that ¬((Ag,a)⊥Ag′).

The following lemma states that if all Ag∈A are following
the Agent Protocol, any agent Ag will not take an action for
which it collides with or violates the safety backup plan of
any agent with lower precedence.

Lemma 0.7: If Ag is following the Agent Protocol, and
SAg,bp(u) = T, Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1) GAg(s,a)∩
(∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S, ¬((Ag,a)⊥Ag′),
where the set S , {Ag′|Ag′ ≺ Ag}, i.e. agents with lower
precedence than Ag.

Proof: We prove this by using arguments based on
the definition of precedence, the Agent Protocol, and Agent
Dynamics.

1) Let us first consider all Ag′ where Ag≺Ag′ and Ag′ /∈
BAg(s).

a) Proof by Lemma 0.4.
2) Now, let us consider all Ag′ where Ag≺Ag′ and Ag′ ∈

BAg(s).
3) According to 3, Ag will only take an action that

satisfies all oracles in the top two tiers, including
Odynamic safety(s,a,u).

4) Since a is such that Odynamic safety(s,a,u) = T, by defini-
tion of the oracle, Ag will not cause collision with any
Ag′ ∈BAg(s).

5) According to the Action Selection Strategy defined in
Section V-D, Ag will choose one of three actions: the
agent’s intended action ai, the best straight action ast ,
or its backup plan action abp.

6) Let us consider the backup plan action abp.
a) By violation of safety backup plan, ((Ag,abp)⊥Ag′)

only if La(Ag) = La(Ag′).
b) W.l.o.g., let us consider Ag′ that is directly behind

Ag.
c) Since SAg′,bp(s,u) = T, by Assumption 6 in Section

VI, Odynamic safety(s,abp,u) = T, meaning Ag′ will be
far enough behind Ag so that if Ag executes its
backup plan action abp, Ag′ can safely execute its
own backup plan action.

d) Thus, by Definition 6.3, ¬((Ag,abp)⊥Ag′).
7) Let us consider the best straight action ast .

a) This follows from the arguments made in 6, since ast
is a less severe action than abp.

8) Let us consider the intended action ai.
a) Let us consider when γAg = {straight}.

i) This follows from 6.
b) Let us consider when γAg ∈
{right-turn,left-turn}.
i) If Ag takes such an action, Ag will end up

in a state where Bu(Ag′) 6= Bu(Ag) and from
Definition 6.3, agents in different bundles cannot
violate each others’ backup plans.

c) Let us consider when γAg ∈
{right-lane change



left-lane change}.
i) (Ag,ai)⊥Ag′ when ai is a lane change and the

agents Ag and Ag′ are at a state such that s f =
τ(s,ai) and s′f = τ(s′,abp), respectively, where
d(s f ,s′f ) < gapreq, where d(s f ,s′f ) is the l2 dis-
tance between s f and s′f .

ii) When this condition holds, the agent’s max-
yielding-not-enough flag FAg(u,ai) defined in
Section 5.2 will be set.

iii) According to the action-selection strategy, Ag will
only take ai when FAg(u,ai) = F.

iv) Thus, Ag will only take ai when ¬((Ag,ai)⊥Ag′).

The following lemma states that if all Ag∈A are following
the Agent Protocol, any agent Ag will not take an action for
which it collides with or violates the safety backup plan of
any agent with equal precedence.

Lemma 0.8: If Ag is following the Agent Protocol, and
SAg,bp(u) = T, Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1) GAg(s,a)∩
(∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S, ¬((Ag,a)⊥Ag′),
where the set S, {Ag′|Ag′∼Ag}, i.e. agents with equivalent
precedence as the agent.

Proof: We prove this by using arguments based on the
definition of precedence, Agent Dynamics, and the Agent
Protocol.

1) Let us first consider all Ag′ where Ag≺Ag′ and Ag′ /∈
BAg(s).

a) Proof by Lemma 0.4.
2) Now, let us consider all Ag′ where Ag≺Ag′ and Ag′ ∈

BAg(s).
3) Let us first consider the agent itself, since an agent has

equivalent precedence to itself.
a) This is true by Lemma 0.5.

4) This can be proven for any other agents of equivalent
precedence that is not the agent itself as follows.

5) Agents with equal precedence take actions simultane-
ously so Odynamic safety(s,a,u) does not guarantee no
collision.

6) According to the Action Selection Strategy defined in
Section V-D, Ag will choose one of three actions: the
agent’s intended action ai, the best straight action ast ,
or its backup plan action abp.

7) By definition of precedence assignment, any Ag′ for
which Ag′ ∼ Ag will be such that La(Ag) 6= La(Ag′).

8) Let us show if Ag selects abp, it will 1) not collide with
any Ag′ ∈ S and 2) ¬((Ag,abp)⊥Ag′).

a) W.l.o.g., let us consider Ag′ where Ag′ ∼ Ag.
b) The flag FAg’(u,ai) = T if Ag′s intended action

ai causes collision with Ag or (Ag′,ai)⊥Ag, i.e. it
collides with or violates the safety of Ag’s backup
plan action.

c) By the action-selection-strategy, Ag′ will not take the
action ai when FAg’(u,ai) = T, so this guarantees Ag
will not collide with Ag′ when Ag takes abp.

d) By the Agent Dynamics, Ag’s backup plan action
cannot cause Ag to end up in a position where it
can violate Ag′’s backup plan without colliding with
it–for which Ag′’s flag FAg(u,ai) would be set.

9) Let us show that Ag will only choose an ast if it will
1) not collide with Ag′ ∈ S and 2) ¬((Ag,ast)⊥Ag′).

a) When ast = abp, then the arguments in 8 hold.
b) Ag selects an ast that is not abp only when 1) its

conflict cluster is empty (i.e. CAg = /0) or 2) when it
has received a conflict request from another agent and
it has won its conflict cluster resolution (i.e. WAg =
T).

c) If CAg = /0, by definition of how conflict clusters are
defined in Section 5.3, the agent’s action ast will not
cause Ag to collide with any Ag′ ∈ S, and ∀Ag′ ∈
S,¬((Ag,ast)⊥Ag′).

d) In the case Ag has received a conflict request and has
won WAg, by Lemma 0.2, if WAg = T, it will be the
only agent in its conflict cluster that has won.

e) By definition of the conflict cluster, any Ag′ ∈ CAg
where Ag∼ Ag′ will take a straight action.

f) Since agents of equivalent precedence are initially
in separate lanes by 7 and any Ag′ ∈ S will take a
straight action, then La(sAg,t+1) 6= La(sAg’,t+1) when
Ag takes ast .

g) Thus, by definition of agent dynamics and Definition
6.3, the action will not cause Ag to collide with any
Ag′ ∈ S, and ∀Ag′ ∈ S,¬((Ag,ast)⊥Ag′).

10) Let us show that Ag will only choose an ai if it will 1)
not collide with any Ag′ ∈ S and 2) ¬((Ag,ai)⊥Ag′).

a) Let us consider when γAg = straight for ai.
i) This follows from the same arguments presented

in 9.
b) Let us consider when γAg ∈
{right-turn, left-turn} for ai.
i) This follows from the fact that all other agents

are following the Agent Protocol and will not
take a lane-change action in the intersection, and
because of the definition of the Agent Dynamics
and Road Network.

c) Let us consider when γAg ∈
{right-lane change,
left-lane change}.
i) Ag will only take its intended action ai if the flag

FAg(u,ai) = F, and in the case that it is part of
a conflict cluster, it is the winner of the conflict
cluster resolution, i.e. WAg = T.

ii) By definition of FAg(u,ai), the agent will not take
ai when ai causes Ag to collide with any agent
Ag′ ∈ S or when it causes Ag to violate the safety
of the back up plan of another agent Ag′, i.e. ∃Ag′

s.t. (Ag,ai)⊥Ag′.
iii) In the case the agent has received a conflict

request and has won WAg, by Lemma 0.2, if
WAg = T, it will be the only agent in its conflict



cluster that has won.
iv) By definition of the conflict cluster, any Ag′ ∈CAg

where Ag∼ Ag′ will take its backup plan action
abp, and thus s f = τ(s,ast), and s′f = τ(s,abp),
where
d(s f ,s′f )≥ gapreq.

v) Thus, ai will only be selected when ai does not
cause Ag to collide with any Ag′ ∈ S and
∀Ag′ ∈ S,¬((Ag,ai)⊥Ag′).

The following lemma states that if all Ag∈A are following
the Agent Protocol, any agent Ag will not take an action for
which it collides with or violates the safety backup plan of
any agent with incomparable precedence to it.

Lemma 0.9: If Ag is following the Agent Protocol, and
SAg,bp(u) = T, Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1) GAg(s,a)∩
(∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S, ¬((Ag,a)⊥Ag′),
where the set S , {Ag′|Ag′ 6∼ Ag}, i.e. agents with prece-
dence incomparable to the agent.

Proof: We prove this by using arguments based on the
definition of precedence, Agent Dynamics, and the Agent
Protocol.

1) Let us show when Ag chooses abp, it will 1) not collide
with any Ag′ ∈ S and 2) ¬((Ag,abp)⊥Ag′).

a) Since SAg,bp(u) = T, the agent will have at least
one action (abp) for which the top two tiers of
specifications are satisfied.

b) By 1a, the action abp will only take Ag into the
intersection if traffic light is green.

c) By Assumption 4, all traffic lights are coordinated
so if agents respect traffic light rules, they will not
collide.

d) By the assumption that all other Ag′ ∈G are obeying
the same protocol, each agent will only take actions
that satisfy the top two tiers of their profile.

e) Any Ag′ in a perpendicular bundle will not enter the
intersection since they have a red light.

f) Thus, Ag cannot collide or violate the backup plan
of agents in perpendicular bundles.

g) Any Ag′ in an oncoming traffic bundle must only take
an unprotected left-turn when it satisfies
Ounprotected left-turn(s,a,u).

h) Thus Ag will not collide or violate the backup plan
of agents in bundles of oncoming traffic.

2) Let us show that when Ag chooses ast , it will 1) not
collide with any Ag′ ∈ S and 2) ¬((Ag,ast)⊥Ag′).

a) Since ast is chosen according to the Agent Profile, it
will only be a straight action that is not abp as long as
it satisfies the top-two tiers of the profile and more.

b) Thus, ast will only take Ag into intersection if traffic
light is green.

c) By the same arguments in 1, this holds.
3) Let us show that when Ag chooses ai, it will 1) not

collide with any Ag′ ∈ S and 2) ¬((Ag,ai)⊥Ag′).

a) Let us consider when ai is such that γAg =
straight.
i) This follows from the same arguments presented

in 2.
b) Let us consider when ai is such that γAg ∈
{left-lane change,right-lane change}.
i) Ag will never select such an action at an in-

tersection since Ointersection lane-change(s,a,u) will
evaluate to F.

c) Let us consider when ai is such that γAg ∈
{left-turn, right-turn}.
i) By the assumption that all other agents are fol-

lowing the Agent Protocol, all Ag′ that are in
bundle perpendicular to Bu(Ag) will not be in the
intersection and will not collide with Ag.

ii) Further, the traffic light oracle
Otraffic light(s,a,u) = T only when
¬((Ag,ai)⊥Ag′) when γAg = right-turn.

iii) Thus, when γAg = right-turn proof by 3(c)i
and 3(c)ii.

iv) For an action ai where γAg = left-turn,Ag
will only take ai if Otraffic-light(s,a,u) = T and
Ounprotected left-turn(s,a,u) = T.

v) Since all agents are following the law based on
Proof -H, Otraffic light(s,a,u) =T means action will
not cause the agent to collide with or violate
the safety of the backup plan in perpendicular
bundles.

vi) By the definition of the unprotected-left-turn or-
acle, Ag will only take the left-turn action when
it does not violate the safety of the backup plan
of agents in oncoming traffic.

H. Safety Proof

Theorem 0.10: Given all agents Ag ∈ A in the quasi-
simultaneous game select actions in accordance to the Agent
Protocol specified in Section V, we can show the safety
property P⇒�Q, where the assertion P is an assertion that
the state of the game is such that ∀Ag,SAg,bp(s,u) = T, i.e.
each agent has a backup plan action that is safe, as defined
in 6.2. We denote Pt as the assertion over the state of the
game at the beginning of the time-step t, before agents take
their respective actions. Q is the assertion that the agents
never occupy the same grid point in the same time-step
(e.g. collision never occurs when agents take their respective
actions during that time-step). We denote Qt as the assertion
for the agent states/actions taken at time-step t.

Proof: To prove an assertion of this form, we need to
find an invariant assertion I for which i) P⇒ I, ii) I⇒�I,
and iii) I ⇒ Q hold. We define I to be the assertion that
holds on the actions that agents select to take at a time-step.
We denote It to be the assertion on the actions agents take at
time t such that ∀Ag, Ag takes a∈ ActAg where 1) it does not
collide with other agents and 2) ∀Ag,SAg,bp(u′) = T where
s′ = τAg(s,a), and u′ is the corresponding global state of the



game after Ag has taken its action a.
It suffices to assume:

1) Each Ag ∈ A has access to the traffic light states.
2) There is no communication error in the conflict requests,

token count queries, and the agent intention signals.
3) All intersections in the road network R are governed by

traffic lights.
4) The traffic lights are designed to coordinate traffic such

that if agents respect the traffic light rules, they will not
collide.

5) Agents follow the agent dynamics defined in Section
III-A.

6) For t = 0, ∀Ag ∈ A in the quasi-simultaneous game is
initialized to:
• Be located on a distinct grid point on the road

network.
• Have a safe backup plan action abp such that

SAg,bp(s,u) = T.

We can prove P⇒�Q by showing the following:

1) Pt ⇒ It . This is equivalent to showing that if all agents
are in a state where P is satisfied at time t, then all
agents will take actions at time t where the I holds.

a) In the case that the assertion Pt holds, let us
show that Ag will only choose an action a ∈ ActAg
for which the following two conditions hold: 1)
GAg(s,a)∩ (∪Ag′∈SGAg′(s

′,a′)) = /0 and 2) ∀Ag′ ∈ S,
¬((Ag,a)⊥Ag′), where the set S is:
i) The set S , {Ag′|Ag ≺ Ag′}, i.e. agents with

higher precedence than Ag. Proof by Lemma 0.6.

ii) S, {Ag′|Ag′≺Ag}, i.e. agents with lower prece-
dence than Ag. Proof by Lemma 0.7.

iii) S, {Ag′|Ag′ ∼Ag}, i.e. agents with equal prece-
dence than the agent. Proof by Lemma 0.8.

iv) S, {Ag′|Ag′ 6∼ Ag}, i.e. agents with precedence
incomparable to the agent. Proof by Lemma 0.9.

b) The set of all agents, agents with lower precedence,
higher precedence, equal precedence, and incompara-
ble precedence, is complete and includes all agents.

c) By 1-1(a)iv and 1b, an agent will not take an ac-
tion that will cause collision with any other agents
(including itself) or violate the safety of the safety
backup plan of all other agents, and thus any action
taken by any agent will be such that following the
action, the assertion P still holds.

2) Pt ⇒ It . This is equivalent to showing that if all agents
are in a state where P is satisfied at time t, then all
agents will take actions at time t where the I holds.
This can be proven using arguments based on the design
of the Agent Protocol. More details can be found in
Lemmas A.0.4-A.0.9 in the Appendix.

3) I ⇒ �I. If agents take actions at time t such that the
assertion It holds, then by the definition of the assertion

I, agents will end up in a state where at time t+1,
assertion P holds, meaning It⇒Pt+1. Since Pt+1⇒ It+1,
from 2, we get I⇒�I.

4) I⇒ Q. This is equivalent to showing that if all agents
take actions according to the assertions in I, then
collisions will not occur. This follows from the invariant
assertion that agents are taking actions that do not cause
collision, and the fact that all Ag have a safe backup
plan action abp to choose from, and thus will always
be able to (and will) take an action from which it can
avoid collision in future time steps.

I. Liveness Lemmas

Lemma 0.11: If the only a ∈ ActAg for an agent
Ag for which Odestination reachability(s,a,u) = T and
Oforward progress(s,a,u) = T is an action such that:
γAg ∈ {right-turn, left-turn} and the grid-
point s f = τAg(s,a) is unoccupied (for a left-turn, where a
is the final action of the left-turn maneuver), Ag will always
eventually take a.

Proof: W.l.o.g., let us consider agent Ag ∈ A in the
quasi-simultaneous game G. We prove this by showing
that all criteria required by the Agent Protocol are always
eventually satisfied, thereby allowing Ag to take action a.

1) By the definition of R and the agent dynam-
ics, when Ag is in a position where only γAg ∈
{right-turn,left-turn}, it will neither send nor
receive requests from other agents and FAg(u,ai) will
never be set to T.

2) In accordance with the Action Selection Strategy, for
Ag to take action a, all the oracles in the Agent Profile
must be simultaneously satisfied (so it will be selected
over any other a′ ∈ ActAg). Thus, we show:

a) The following oracle evaluations will
always hold when Ag is in this
state: Otraffic intersection lane-change(s,a,u) =
T,Olegal orientation(s,a,u) = T, Ostatic safety(s,a,u) = T
and
Otraffic intersection clearance(s,a,u) = T.
i) The first oracle is true vacuously and the follow-

ing are true by the road network constraints and
agent dynamics, Assumption 8, and the assump-
tion in the lemma statement that s f = τ(s,a) is
unoccupied respectively.

b) To show that the following oracles will always even-
tually simultaneously hold true, let us first consider
when γ = {right-turn}.
i) By the assumption, the traffic light is red for a

finite time, and when the traffic light is green,
Otraffic light(s,a,u) = T.

ii) Ounprotected left-turn(s,a,u) is vacuously true for a
right-turn action.

iii) Since Otraffic intersection clearance(s,a,u) = T and by
the safety proof -H, all Ag are only taking actions
in accordance with traffic laws so there will never



be any Ag′ ∈A blocking the intersection, making
Odynamic safety(s,a,u) = T.

iv) Thus, all oracles are always eventually simulta-
neously satisfied and Ag can take a where γ =
{right-turn}

c) Let us consider when γAg = {left-turn}.
i) By Assumption 7, traffic lights are green for a

finite time.
ii) By the safety proof -H, all Ag are only taking ac-

tions in accordance with traffic laws so there will
never be any Ag′ ∈ A blocking the intersection.

iii) When γAg = left-turn, by definition
of the unprotected left-turn oracle,
�♦Ounprotected left-turn(s,a,u), specifically when
the traffic light switches from green to red and
Ag has been waiting at the traffic light.

iv) Thus, �♦Ounprotected left-turn(s,a,u) after the light
turns from green to red.

v) Further, Ounprotected left-turn(s,a,u) = T combined
with
Otraffic intersection clearance(s,a,u) = T implies
Odynamic safety(s,a,u) = T.

vi) Thus, all oracles are always eventually simulta-
neously satisfied and Ag can take a where γ =
{left-turn}.

3) Thus, we have shown all oracles in the Agent Profile
will always eventually be satisfied, and Ag will take a
such that Odestination reachability(s,a,u) = T and
Oforward progress(s,a,u) = T.

Lemma 0.12: If the only a ∈ ActAg for which
Odestination reachability(s,a,u) = T and Oforward progress(s,a,u) =
T is when a has
γAg ∈ {right-lane change, left-lane change}
and the grid-point(s) G (s,a) is (are) either unoccupied or
agents that occupy these grid points will always eventually
clear these grid points, Ag will always eventually take this
action a.

Proof: W.l.o.g., let us consider agent Ag ∈ A in the
quasi-simultaneous game G. We prove this by showing
that all criteria required by the Agent Protocol are always
eventually satisfied, thereby allowing Ag to take its action a.

1) Let us consider Case A, when a is such that s f =
τAg(s,a) = GoalAg, i.e. the action takes the agent to
its goal, and let us show that Ag will always eventually
be able to take a.

2) In accordance with the Action Selection Strategy, for
Ag to take a is that 1) all the oracles in the agent
profile must be simultaneously satisfied (so the action a
is chosen over any other a′ ∈ ActAg, 2) FAg(u,ai) = 0,
and 3) WAg = T.

3) We first show all the oracles for Ag will always be
simultaneously satisfied:

a) When Ag is in this state, the following oracle
evaluations always hold: Otraffic light(s,a,u) = T,
Otraffic intersection lane-change(s,a,u) = T,

Ounprotected left turn(s,a,u) = T,
�♦Otraffic intersection clearance(s,a,u),
Ostatic safety(s,a,u) = T, Otraffic orientation(s,a,u) = T.
i) The first four hold vacuously, the others hold

by Assumption 8, and the last holds by Agent
dynamics and the Road Network.

b) Odynamic safety(s,a,u) = T.
i) By the definition Road Network R, agent dy-

namics in Section III-A, and the condition that
∀Ag ∈ A will leave R (i.e. Ag does not occupy
any grid point on R when it reaches its respective
goal GoalAg). Thus,
Odynamic safety(s,a,u) = T whenever an agent is in
this state.

4) In accordance with the action selection strategy, for Ag
to take a, it must be that FAg(u,ai) = 0, i.e. the max-
yielding-flag-not-enough must not be set. Let us show
that this is always true.

a) The only Ag′ that can cause the FAg(u,ai) = 1 of Ag
is when an agent Ag′ is in a state where La(Ag′) =
GoalAg.

b) W.l.o.g. let us consider such an Ag′. By liveness
Assumption 9, upon approaching the goal, the agent
Ag′ must be in a state where Ag′ backup plan action
abp will allow it to a complete stop before reaching
its goal.

c) By 4b, Ag′ will always be in a state for which the
max-yielding-not-enough flag for Ag is FAg(u,ai) =
0.

5) In order for Ag to take a, it must be that WAg = 1. Let
us show that this is always eventually true.

a) In the case that Ag has the maximum number of
tokens, WAg = 1 and Ag will be able to take its
forward action since all criteria are satisfied.

b) Any Ag′ ∈ CAg will be of equal or lower precedence
than Ag.

c) Any Ag′ with the maximum number of tokens will
move to its goal since WAg = 1 and all the other
criteria required for that agent to take its action will
be true.

d) By definition of the Action Selection Strategy in
Section V-D, any agent Âg that replaces Ag′ will have
taken a forward progress action and its respective
token count will reset to 0.

e) Thus, any Ag′ will be allowed to take its action before
Ag, but Ag’s token count TcAg will increase by one
for every time-step this occurs.

f) Thus, by 5d and by 5e, Ag will always eventually
have the highest token count in its conflict cluster
such that WAg = 1.

g) Since conditions 3 and 4 are always true, and 5
is always eventually true, then all conditions will
simultaneously always eventually be true and the Ag
will always eventually take the action a.

6) Let us consider Case B, when a is the final



action to take for an agent to reach its sub-
goal (i.e. a critical left-turn or right-turn tile), and
let us show Ag will always eventually be able
to take a forward progress action where γAg ∈
{left-lane change,right-lane change}.

7) In accordance with the Action Selection Strategy, for Ag
to take a is that 1) WAg = 1, 2) FAg(u,ai) = 0, i.e. the
max-yielding-flag-not-enough must not be set and 3) all
the oracles in the Agent Profile must be simultaneously
satisfied.

8) Let us first consider when WAg = 1, then �WAg until Ag
takes its forward progress action a because by definition
of WAg, Ag has the highest token count in its conflict
cluster, Ag.tc = Ag.tc+ 1, while Ag does not select
a (and thus does not make forward progress) and any
Ag that newly enters Ag’s conflict cluster will have a
token count of 0.

9) All the oracles are either vacuously or trivially satisfied
by the assumptions except for Odynamic safety(s,a,u).

10) By the Assumption 7, the traffic light will always cycle
through red-to-green and green-to-red at the intersection
Ag is located at.

11) By the Assumption on the minimum duration of the
red traffic light, all Ag′ will be in a state such that
FAg(u,ai) = 0.

12) By the lemma assumption that all Ag′ occupying grid
points will always eventually take their respective for-
ward progress actions, �♦Odynamic safety(s,a,u).

13) Thus, all criteria for which Ag can take its forward
progress action a will be simultaneously satisfied.

14) When WAg = 0, we must show �♦WAg.
a) For Ag, all agents in its conflict cluster have equal

or lower precedence and are not in the same lane as
Ag.

b) For any such Ag′ with equal precedence, Ag′ will
always eventually take its forward progress action by
the arguments in 8-14 if Ag′ intends to make a lane-
change.

c) By the lemma assumption, any agents Ag′ occupying
the grid points that Ag needs to take its action will
always eventually take its forward progress action so
�♦Odynamic safety(s,a,u).

d) Any Âg with lower precedence and higher token
count that Ag will take Ag′’s position and in doing so
will have a token count of 0 and any Ag that replaces
any agents with higher token count than Ag and is in
Ag’s conflict cluster will have token count 0.

e) Thus �♦WAg.

Lemma 0.13: Let us consider a road segment rs ∈ RS
where there exist grid points g ∈ Ssinks. Every Ag ∈ rs
will always eventually be able to take a ∈ ActAg for which
Oforward progress(s,a,u) = T.

Proof: We prove this by induction. W.l.o.g, let us con-
sider Ag ∈ A. Let mAg = projlong(GoalAg)−projlong(Ag.s).

1) Base Case: mAg = 1, i.e. Ag only requires a single action

a to reach its goal GoalAg.
a) If a is such that

γAg ∈{left-lane change, right-lane change},
then Ag will take always eventually this action by
Lemma 0.12.

b) If a is such that γAg = straight:
c) In accordance with the Action Selection Strategy, for

Ag to take a is that 1) all the oracles in the agent
profile must be simultaneously satisfied (so the action
a is chosen over any other a′ ∈ ActAg, and 2) WAg =
1.

d) First, we show that all oracles in the agent profile
will always be simultaneously satisfied.
i) These all follow from the same

arguments presented when γAg =
{right-lane change, left-lane change} in Case
A in Lemma 0.12.

e) In accordance with the Action Selection Strategy, we
must show that �♦WAg. This is vacuously true since
no Ag will be in the agent’s conflict cluster when an
agent is in this state.

2) Case m = N: Let us assume that any ∀Ag where mAg =
N always eventually take a ∈ ActAg for which
Oforward progress(s,a,u) = T.

3) Case m = N +1: Let us show ∀Ag where mAg = N +1
always eventually take a for which
Oforward progress = T.

a) Any Ag for which mAg > 1 will always
have an a where γAg = straight such that
Oforward progress(s,a,u) = T.

b) Thus, we show that Ag always eventually will take
γAg = straight such that Oforward progress(s,a,u) =
T.

c) W.l.o.g., let us consider Ag for which mAg = N +1.
d) In accordance with the Action Selection Strategy, for

Ag to take a is 1) WAg = 1 and 2) all the oracles in
the agent profile must be simultaneously satisfied (so
the action a is chosen over any other a′ ∈ ActAg).

e) In accordance with the Action Selection Strategy, we
must show �♦WAg.
i) Any Ag′ ∈CAg will be an agent of equal or higher

precedence and in separate lane.
ii) Any such agent with higher token count than Ag

that is in its conflict cluster will always eventually
be able to go by the inductive assumption in 2.

iii) After all such agents take a forward progress
action, they will no longer be in Ag’s conflict
cluster and Ag will have the highest token count
since all Ag that newly enter the conflict cluster
will have token count of 0.

f) After the assignment WAg = 1, �WAg until Ag selects
a. This is true because by definition of WAg, Ag
has the highest token count in its conflict cluster,
Ag.tc= Ag.tc+1, while Ag does not select a, and
any Ag that enters Ag’s conflict cluster will have a



token count of 0.
g) Let us show that the oracles in the Agent Profile will

always evaluate to T.
i) The same arguments hold here as in Lemma

0.12.1 for all oracles except for
Odynamic safety(s,a,u), where
�♦Odynamic safety(s,a,u) = T by the inductive
Assumption 2.

Lemma 0.14: Let Ag be on a road segment rs∈RS, where
RS is the set of nodes in the dependency road network
dependency graph Gdep. Let rs be a road segment for which
∀rs′ ∈RSs.t.∃e : (rs′,rs). Each road segment rs′ has vacancies
in the grid points where Ag ∈ rs would occupy if it crossed
the intersection (i.e. s f = τAg(s,a)), and we show that Ag
will always eventually take an action a ∈ ActAg where
Oprogress oracle(s,a,u) = T.

Proof: We prove this with induction. W.l.o.g.,
let us consider Ag ∈ A. Let mAg = projlong(gfront of rs)−
projlong(Ag.s), where gfront of intersection represents a grid point
at the front of the road segment.

1) Base Case mAg = 0: Let us consider an Ag whose
next action will take will bring Ag to cross into the
intersection and show that Ag will always eventually
take a for which Oforward progress(s,a,u) = T.

a) If the only a where Oforward progress = T is such
that γAg ∈ {left-turn, right-turn}, proof by
Lemma 0.11.

b) If the only a where Oforward progress(s,a,u) = T is such
that γAg = straight.
i) In accordance with the Action Selection Strategy,

for Ag to take a is that 1) all the oracles in the
Agent Profile must be simultaneously satisfied (so
the action a is chosen over any other a′ ∈ ActAg,
2) WAg = 1.
A) Ounprotected left-turn(s,a,u) = T,

Otraffic intersection lane-change(s,a,u) = T,
Ostatic safety(s,a,u) = T,
Otraffic intersection clearance(s,a,u) = T
Olegal orientation(s,a,u) = T.

B) The first two oracles are true vacuously, fol-
lowed by Assumption 8, and by agent dy-
namics and the road network R definition,
respectively, and by the assumption in the
lemma statement.

C) �♦Otraffic light(s,a,u) by Assumption 7.
D) Odynamic obstacle(s,a,u) = T because by the

safety proof, all Ag take a∈ ActAg that satisfy
the first top tiers of the agent profile so there
will be no Ag′ ∈ A that are in the intersec-
tion when the traffic light for Ag is green.
Thus, whenever Otraffic light(s,a,u) = T, then it
Odynamic obstacle(s,a,u) = T as well.

ii) WAg = 1 vacuously since neither Ag or any
Ag′ ∈ A will send a conflict request at the
front of the intersection since all ai must satisfy

Otraffic intersection lane-change(s,a,u) according to the
Safety Proof in Section A-H.

c) By the safety proof in -H, Ag will only take
a ∈ ActAg that satisfy the top two tiers of the Agent
Profile, so Ag will not take an a where
γAg ∈{left-lane change,right-lane change}
into an intersection.

2) Case mAg = N: Let us assume that Ag with mAg = N
will always eventually take a ∈ ActAg for which
Oforward progress(s,a,u) = T.

3) Case mAg = N + 1: Let us show that any Ag that
is at a longitudinal distance of N + 1 from the
destination will always eventually take a for which
Oforward progress(s,a,u) = T.

a) Let us consider when Ag’s only a such that
Oforward progress(s,a,u) = T is
γAg ∈{right-lane change,left-lane change
}.

b) Although Ag may not have priority (since it does not
have max tokens in its conflict cluster), any Ag that
occupies grid points G (s,a,u) will always eventually
make forward progress by Argument 1.

c) Further,
d) Once these agents have made forward progress, any

Âg that replace Ag′ will have a TcAg = 0 and since
Ag is always increasing its token counts as it cannot
make forward progress, it will always eventually have
the max tokens and thus have priority over those grid
points.

e) Thus, this can be proven by using Case B in Lemma
0.12.

f) For all other a ∈ ActAg are actions for which γAg =
straight, and the same arguments as in the proof
of straight actions for rs with g ∈Ssinks in 3 hold.

J. Liveness Proof

Theorem 0.15 (Liveness Under Sparse Traffic Conditions):
Under the Sparse Traffic Assumption given by 6.4 and given
all agents Ag ∈ A in the quasi-simultaneous game select
actions in accordance with the agent protocol specified
in Section V, liveness is guaranteed, i.e. all Ag ∈ A will
always eventually reach their respective goals.

Proof: It suffices to assume:

1) ∀Ag ∈ A, ∀Ag′ ∈ BAg, Ag knows Ag′.s,Ag′.i, i.e. the
other agent’s state Ag.s and intended action ai and all
Ag within a region around the intersection defined in
the Appendix.

2) Each Ag ∈ A has access to the traffic light states.
3) There is no communication error in the conflict requests,

token count queries, and the agent intention signals.
4) For t = 0, ∀Ag ∈ A in the quasi-simultaneous game is

initialized to:
• Be located on a distinct grid point on the road

network.



• Have a safe backup plan action abp such that
SAg,bp(u) = T.

5) The traffic lights are red for some time window ∆ttl
such that tmin < ∆ttl < ∞, where tmin is defined in the
Appendix in Section -K.1.

6) The static obstacles are not on any grid point g where
g.d = 1.

7) Each Ag treats its respective goal Ag.g as a static
obstacle.

8) Bundles in the road network R have no more than 2
lanes.

9) The road network R is such that all intersections are
governed by traffic lights.

and prove:
1) Let us consider a road segment r ∈ RS that con-

tains grid point(s) g ∈ Ssinks. Every Ag ∈ r will be
able to always eventually take a ∈ ActAg for which
Oforward progress(s,a,u) = T.

2) Let us consider a road segment rs ∈ RS. Let us assume
∀rs ∈ RS,∃(rs,rs′) ∈ Gdep, i.e. the clearance of rs de-
pends on the clearance of all rs′. We use inductive rea-
soning to show that any Ag on rs will always eventually
take an a ∈ ActAg where Oforward progress(s,a,u) = T.

3) For any R where the dependency graph Gdep (as defined
in 4.2) is a directed-acylcic-graph (DAG), we prove all
Ag ∈A will always eventually take a ∈ ActAg for which
Oforward progress(s,a,u) = T inductively as follows.

a) A topological sorting of a directed acyclic graph G
= (V, E) is a linear ordering of vertices V such that
(u,v) ∈ E→ u appears before v in ordering.

b) If and only if a graph G is a DAG, then G has a
topological sorting. Since Gdep is a DAG, it has a
topological sorting.

c) We can then use an argument by induction on the
linear ordering provided by the topological sorting to
show that all Ag always eventually take a∈ ActAg for
which
Oforward progress(s,a,u) = T.
i) Let l denote the linear order associated with the

road network dependency graph Gdep, where an
ordering of l = 0 denotes a road segment with
source nodes.

ii) Base Case l = 0. This can be proven true by
Lemma 0.13.

iii) Let us assume this is true for any road segment
where l = N.

iv) Under the Inductive Assumption 3(c)iii, there will
be clearance in any road segment that agent Ag
depends on for Ag to make forward progress to
its destination.

v) Since all Ag are following the traffic laws by
the Safety proof in -H, the clearance spots will
be given precedence to Ag ∈ rs for a positive,
finite time, and thus the assumptions required in
Lemma 0.11 and 0.12 used to prove Lemma 0.14
will hold.

vi) Thus, the Lemma 0.14 to show that all Ag for
which l = N+1 always eventually take an action
for which
Oforward progress(s,a,u) = T.

4) When the graph Gdep is cyclic, the Sparsity Assumption
6.4 can be used to prove all agents always eventually
take an action for which Oforward progress(s,a,u) = T.

a) The sparsity assumption 6.4 ensures that there is at
least one vacancy in any map loop.

b) Let us consider Ag inside a map loop.
i) Let us consider Ag in the loop for which the

vacancy is directly ahead of Ag. If the vacancy
is directly ahead of Ag, then if the only forward
progress action a keeps Ag in the loop, Ag will
always eventually take its action by Lemmas 0.11,
0.12 and the arguments in Lemma 0.14 1b. If the
only forward progress action a makes Ag leave
the loop, Ag will always eventually take its action
by the sparsity assumption 6.4 and the inductive
arguments in 2c.

ii) By 4(b)i, it can then be inductively shown that
any Ag in the loop will always eventually have a
vacancy for which it can take a forward progress
action.

c) Let us consider Ag on a road segment that is not part
of a map loop.
i) Let us consider an action a that takes Ag into a

map loop. If the grid point required by Ag to make
forward progress is occupied, by 4(b)ii, it will al-
ways eventually be unoccupied. If the only action
Ag can take is such that γAg = {lane-change}
since all Ag′ in the loop are reset when they
take forward progress action, Ag will always
eventually have the max token count. Thus, the
same arguments in Lemma 0.12 hold. If the only
action Ag can take is such that Ag crosses into
an intersection, the traffic light rules ensure that
Ag has precedence over any Ag in the loop. Thus,
Ag will always eventually take a forward progress
action by Lemma 0.11 and Lemma 0.14 1b.

ii) For any action a that does not take Ag into a
map loop, Ag can take a forward action because
of the sparsity assumptions 6.4 and the inductive
arguments in 2c.

5) By the induction arguments and by definition of the
forward progress oracle Oforward progress(s,a,u), all Ag
will always eventually take actions that allow them
to make progress to their respective destinations, and
liveness is guaranteed.

K. Traffic Light Assumptions

A traffic light grid point contains three states g.s =
{red,yellow,green}. The traffic lights at each intersec-
tion are coordinated so that if all agents obey the traffic
signals, collision will not occur (i.e. the lights for the same



intersection will never be simultaneously green) and the
lights are both red for long enough such that Ag that entered
the intersection when the light was yellow will be able to
make it across the intersection before the other traffic light
turns green.

1) Traffic Light Minimum Time: In order to guarantee that
agents will always eventually be able to make a lane-change
to a critical tile, the traffic light has to be red for sufficiently
long such that any Ag′ that may cause FAg(u,ai) = T is
slowed down for long enough such that Ag can take its lane-
change action. This can be computed simply once given the
dynamics of Ag. Normally a simple heuristic can be used
instead of computing this specific lower-bound.

L. Simulation Maps

Fig. 9: Straight road map environment.

Fig. 10: City blocks map environment.

M. Simulation Environment Features

A road network environment, complete with legal lane
orientations, intersections, and traffic lights, can be specified
via a CSV file. The specified (by the user) road network
environment forms a map data structure graph, which de-
composes the roads into bundles, mentioned in V-A.

The map will automatically parse the boundaries and
lane directions of the road network to define where agents
can either spawn from or exit the road network. In each
game scenario, agents will randomly spawn according to a
specified spawn rate.

Each agent has the following attributes in our simulation:
parameters like min and max velocity and accelerations,
dynamics specified by agent actions and their corresponding
occupancy grids, goal location, agent color, ID, token count.
Note, these attributes can be modified depending on what
the user wants to include. For each agent, a graph-planning
algorithm is used to compute a high-level motion plan on
the map graph to get the agent to its goal.

Each game scenario is comprised of the road network
graph and a set of agents (constantly changing over time
as new agents spawn and old agents reach their goals and
leave). The game is simulated forward for a specified number

of time steps and the traces from the simulation are saved.
The animation module in RoSE animates the traces from the
simulated game.

RoSE also offers a collection of debugging tools to help
reconstruct scenarios that occurred during a simulated game.
If the user would like to regenerate the same initialization,
the simulation has a feature where users can specify a
specific randomization seed. There is a configuration tool
that allows users to prescribe the states of a set of agents
and their respective goals. A final debugging tool outputs
the variables of the agent that were relevant to the decision-
making process.
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