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Abstract— Rules or specifications for autonomous vehi-
cles are currently formulated on a case-by-case basis, and
put together in a rather ad-hoc fashion. As a step towards
eliminating this practice, we propose a systematic proce-
dure for generating a set of supervisory specifications for
self-driving cars that are 1) associated with a distributed
assume-guarantee structure and 2) characterizable by the
notion of consistency and completeness. Besides helping
autonomous vehicles make better decisions on the road, the
assume-guarantee contract structure also helps address the
notion of blame when undesirable events occur. We give
several game-theoretic examples to demonstrate applica-
bility of our framework.

I. INTRODUCTION

In the near future, autonomous vehicles will likely

have to function alongside human-operated vehicles,

pedestrians, cyclists, and more—that is, until a fully-

automated transportation infrastructure can be built. The

interaction between self-driving cars and humans will

inevitably result in accidents.

Self-driving car manufacturers are therefore responsi-

ble for designing the high-level behavior of cars such

that they minimize the risk of collision. Currently,

however, the rules that self-driving cars follow are

often designed heuristically, and are therefore lacking in

transparency, predictability, and performance [12], [16].

We argue that if all self-driving cars were to adhere to

some behavioral contract, there would be much greater

certainty of how other self-driving cars would behave,

thereby making it significantly easier to choose actions

that would be mutually beneficial and also reduce the

risk of accidents. The process of identifying the party

responsible for an accident would also be simplified.

Furthermore, car manufacturers could even begin to

optimize their car behavior to accommodate driving

preferences in addition to safety, like courtesy or fuel

efficiency.

To describe this contract, formal methods appear to

be a good place to start. These provide many tools

and formalisms for tackling specifications that guarantee
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high-level behaviors like safety and liveness in com-

plex systems like self-driving cars [1]. Temporal logic

specifications oftentimes, however, involve making rela-

tively specific assumptions on the environment to reduce

the search space such as “other vehicles must remain

entirely in travel lane at all times” [19]. Additionally,

the set of specifications for self-driving cars are often

scenario-specific and are formulated independently of

one another [16].

A more ontological approach to handling specifica-

tions involves designing “rulebooks” that specify the

high-level behaviors of self-driving cars [2]. The rule-

books hierarchically order the set of rules for self-driving

cars via a preorder. The preorder intentionally leaves

ambiguity in how the car will choose to follow the rules,

and therefore does not admit well-defined car behavior.

The authors in [2] cannot make any guarantees about

the correctness of car behavior, because they do not

make any explicit assumptions about how agents in the

environment behave. In particular, they do not address

how to accommodate for the unpredictable and law-

evasive nature of human drivers.

In light of these issues, we propose a framework that

can be used to:

1) Identify high-level specifications and their rela-

tions to one another as part of a hierarchical struc-

ture that helps self-driving cars achieve desirable

behavior on the road.

2) Define what it means for a set of specifications to

be consistent and complete (drawing inspiration

from formal methods).

3) Introduce an assume-guarantee contract formalism

for specification structures as well as notions of

rationality and blame.

4) Present a basic and consistent set of axioms for

self-driving cars that can be refined and built upon.

5) Demonstrate with game-theoretic examples how

rational autonomous vehicle behaviors can be

computed/agreed upon under the assumption they

are aware of each other’s specification structures.

We ultimately want to be able to guarantee that self-

driving cars will behave correctly and not be responsible

for accidents. This paper offers a step in that direction.

II. OVERVIEW

In a dynamic and interactive environment, the prob-

lem of providing guarantees for a single agent without
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Fig. 1. A high-level system architecture capturing the inherent cou-
pling of the behavioral specifications for an agent and its environment
is shown in the bottom figure. Each agent identifies the best action
to take based on which subset of rules are satisfied by that action.
The specification structure and conisistent evaluating function define
a unique ordering on all subsets of rules that ultimately determine
which actions are better or worse than others.

making any assumption on the behaviors of other agents

is ill-posed. We show the inherent coupling between the

assumptions on the environment and the system’s guar-

antees in Fig. 1. We propose the framework of assume-

guarantee profiles to explicitly address this issue.

Definition 1 (Assume-guarantee profile): An

assume-guarantee profile for an agent is a 2-tuple

(A,G) where

• A is a set of behavioral preferences or characteris-

tics that the agent assumes its environment to have.

• G is a set of behavioral preferences or charac-

teristics that it is obligated to behave according

to as long as its environment makes decisions in

accordance with A.

To model the sets of behavioral preferences or char-

acteristics mentioned in Definition 1, we propose a

mathematical object termed a specification structure that

imposes a hierarchy on sets of what we call dimensional

properties. A property is a desirable attribute that must

be satisfied or not satisfied. A dimensional property

is a property whose satisfaction is independent of the

satisfaction (but not dissatisfaction!) of other properties.

Examples of dimensional properties include safety, law-

fulness, courtesy, and comfort. Safety does not imply

comfort but being unsafe can imply discomfort. The

guarantee we make in our assume-guarantee contract

is that the self-driving car will act in accordance with

the specification structure. Intuitively, this means of all

subsets of specifications that the car can satisfy, it will

choose to satisfy the one that is ranked highest in priority

with respect to the specification structure. We define this

more rigorously in the next section.

III. EVALUATOR AND EVALUATED STRUCTURE

Before presenting the formal definition of a specifica-

tion structure, we make the following assumption about

the predictive capabilities of a self-driving car.

Assumption 1 (Oracle): We assume that each au-

tonomous agent relies on an oracle [17] that provides

predictions to its queries about the satisfaction of dimen-

sional properties of interest for any action or strategy

that it is considering. The input to the oracle is a set of

dimensional properties, a potential action or strategy the

car can choose to take, and the current world state con-

figuration. The output of the oracle is some prediction

of what specifications (dimensional properties) will be

satisfied if a strategy is followed. In the most simple

case, the oracle could return a valuation of a set of

a Boolean variables, each indicating whether or not a

property is violated.

Although many decision/optimization problems cur-

rently posed for autonomous vehicles are of high compu-

tational complexities, not to mention undecidable [10],

[13], we expect future technology to be capable of ap-

proximating the oracle to an acceptable level of fidelity

(see [8] for a sample of related methods).

If a set of dimensional properties is simply partially

ordered, then there may not be not enough structure to

uniquely identify which action should be taken.

Example 1: Consider a set S = {a, b, c, d, e} that is

partially ordered (a poset) such that b ≺ a, c ≺ a, d ≺ c,

and e ≺ c. Here, each element in the set represents a

dimensional property like safety, the law, performance,

etc. By this partial order, the node b cannot be compared

to c or d or e. For a self-driving car, any action will result

in satisfying a subset of the dimensional properties.

Since b cannot be compared to c or d or e, it is

ambiguous whether a self-driving car should take an

action that satisfies the properties a, b, and d or an action

that satisfies a, b, and e.

With only a partial ordering on the set of dimensional

properties, there can be ambiguity in choosing the best

subset of properties that can be satisfied. Our aim in

this paper is to define a function evaluator over a set of

dimensional properties such that it resolves all ambiguity

and admits only a unique way to interpret the ordering

of subsets relative to one another. Furthermore, if there

exists a partial order on the set of dimensional properties,

the function evaluator must respect that partial order.

We therefore introduce the idea of consistent evalua-

tors, which are a class of functions that can endow

some posets (in our case, dimesional properties) with

a unique weak order on their powersets. Being weakly

ordered means that all subsets are comparable but some

subsets may have equal values to each other (these are

considered indistinguishable).

In a practical setting, if a self-driving car manu-

facturer wanted to impose a total order instead of a

weak order on the powerset, they would have to face

the challenging task of defining how any one set of
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dimensional properties is strictly better or worse than

another set of dimensional properties. This is arguably

not only impractical because of the exponential growth

in the size of the powerset, but also because sometimes

a strict comparison among sets of properties is simply

unnecessary. A consistent evaluator, which allows for

sets in the powerset to have equal value, therefore

allows for a more sensible way of resolving comparisons

between subsets of specfications.

We refer to maximal chains (antichains) of partially-

ordered sets in our definitions and proofs, so we present

the definitions here.

Definition 2 (Maximal Chain (Antichain)): A chain

(antichain) is a subset of a partially ordered set such that

any two distinct elements in the subset are comparable

(incomparable). A chain (antichain) is maximal when it

is not a proper subset of another chain (antichain).

Definition 3 (Consistent evaluator): Given a set of

dimensional properties P and its powerset 2P , we say

that f : 2P → T , where T is a totally ordered set with ≤
as the ordering relation, is a consistent evaluator for P
if for all subsets P1, P2 ⊆ P , the following must hold:

1) P1 6= ∅ ⇒ f(∅) < f(P1)
2) p1 ∈ P1 ∧ p2 ∈ P2 ∧ f({p1}) = f({p2}) ⇒

(f(P1) ≤ f(P2) ⇒ f(P1−{p1}) ≤ f(P2−{p2}))
3) (∀p1 ∈ P1.∀p2 ∈ P2.f({p1}) 6= f({p2})) ⇒

(max
p∈P1

f({p}) < max
q∈P2

f({q}) ⇒ f(P1) < f(P2))

If P is partially ordered by � and A(P,�) is the set

of all antichains of P , we further require that for any

p1, p2 ∈ P

4) p1 ≺ p2 ⇒ f({p1}) < f({p2})
5) ({p1, p2} ∈ A(P,�) ∧ f({p1}) < f({p2})) ⇒

∃s, t ∈ P.p1 ≺ s∧f({s}) = f({p2})∧f({p1}) =
f({t}) ∧ t ≺ p2

Intuitively, the conditions in Definition 3 mean

1) The evaluator will assign the worst value when

no property is satisfied. This ensures that every

property included in P matters to the evaluator.

2) Properties of equal value to the evaluator can

be disregarded without affecting the result of the

evaluation.

3) For sets that do not have properties with the

same values, the one with the most highly valued

property is preferable.

4) If there exists a pre-imposed hierarchy between

some of the properties, then the evaluator must

respect it.

5) Given a pre-imposed hierarchy on the properties,

the evaluator must be impartial: it will only assign

different values to two properties whose relation-

ship is not defined in the hierarchy when they are

comparable via two equally valued “proxies”.

Example 2: Consider a partially ordered set Q in

which p is the greatest element and all other elements

belong to an antichain. Then we can define f as the

function f(Q̃) := 1p∈Q̃|Q| + |Q̃ − {p}| for all Q̃ ⊆
Q where 1 is the indicator function. This function

evaluates any subset with the maximal element in it as

the cardinality of Q plus the dimension of the subset

not including the element p. It also evaluates any subset

without the maximal element as the dimension of that

subset. One can easily verify that f is a consistent

evaluator for Q.

a (2)

p1 (0)

*s (1)

*proxy nodes

p2 (1)

a (2)

p1 (0)

*s (1)p2 (0)

f1 f2

Fig. 2. A poset that does not admit a consistent evaluator. The values
in parentheses denote the value of the singleton set containing that
node given by the evaluator fi. In both cases, requirement 5 is violated.

Example 3 (Poset without consistent evaluator):

Consider the poset with the structure shown in Fig. 2.

We cannot define a consistent evaluator that satisfies all

five requirements on this partially-ordered set. In order

to satisfy requirement 4, such that the partial order

established in the poset is preserved, the consistent

evaluator function f1 on the left and f2 on the right

can, WLOG, assign all nodes on the right branch of

the poset with the values shown in Fig. 2. To respect

the partial order, by requirements 4 and 5 of consistent

evaluators, p2 must be assigned a value in {0, 1}. The

left figure shows what happens if the function takes

on the value 1 for the left node, i.e., f1({p2}) = 1. If

this happens, then f1({p1}) < f1({p2}) but there is

no proxy node that is comparable to p2 in the poset

and has a value equal to f1({p1}). This clearly violates

requirement 5. The right figure shows what happens if

the function takes on the value 0, i.e. f2({p1}) = 0. A

similar violation is incurred by f2 (see [14]).

Through the previous examples, we see that not all

posets admit a consistent evaluator. The natural question

to ask, is: what makes posets consistently evaluable? The

next theorem will answer this question.

Theorem 1: A finite poset P of dimensional proper-

ties has a consistent evaluator if and only if it can be

partitioned by a set A of N maximal antichains such

that

1) Maximal Antichain and Rank Criterion: The max-

imal antichains A can be assigned ranks in such

a way that the partial order is respected.

2) The Maximal Chain Criterion: For each node

(dimensional property), there exists a maximal

chain containing the node of length N .
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We are ready to give a proof sketch for Theorem 1.

Proof (sketch): (⇒): We associate all properties that

have the same value with a unique antichain. This set of

antichains can be shown to form the partition that has

properties 1) and 2). The reader is referred to [14] for

a full proof.

(⇐): We prove this direction by construction. If a

partially-ordered set is partitioned into ranked maximal

anti-chains, we can construct a function where a subset

is evaluated based on counting the number of nodes that

are satisfied in every rank. Two subsets are comparable

via this function by lexicographical ordering, where the

number of nodes counted for higher ranking antichains

are counted as more significant. We then show that

this function satisfies all the properties defined for a

consistent evaluating function. Readers can refer to 4

for a clarifying example and [14] for the full proof.

Is it possible that there may be multiple such decompo-

sitions of maximal antichains, making the ordering that

is induced via the corresponding rankings is not unique

and hence the consistent evaluator not very consistent?

Luckily, the answer is a reassuring negative.

Theorem 2: Such a partition in Theorem 1 is unique.

Proof (sketch): This result can be obtained using the

pigeonhole principle and property 2 of Theorem 1. A

full argument is available in [14].

We have defined the necessary and sufficient properties

posets need to have so they can be consistently eval-

uated. Since this set of posets is not super intuitive,

we introduce graded posets, which we show are also

consistently-evaluable but easier to reason about.

1 Worst value
2 Equal value disregarded

3 Most highly-valued 
4 Satisfy partial-order

5 Proxy property

Properties of Consistent 
Function Evaluator

Only One Unique Decomposition of poset that satisfy:

r = 2

r = 1

r = 0

The Maximal Antichain + Rank 
criterion

The Maximal 
Chain criterion

Fig. 3. A visualization of Theroem 1.

Definition 4 (Specification structure): A

specification structure is a finite, graded, partially

ordered set of dimensional properties P . Namely, if �
is the ordering relation for P and ≺ is the strict version

thereof satisfying x ≺ y ⇔ (x � y ∧ x 6= y) then there

exists a ranking function ρ : P → N such that

1) p1 ≺ p2 ⇒ ρ(p1) < ρ(p2).
2) p1 ⋖ p2 ⇒ ρ(p2) = ρ(p1) + 1.

3) p is a minimal element of P ⇒ ρ(p) = 0.

where ⋖ denotes the covering relation on P that satisfies

p1 ⋖ p2 ⇔ p1 ≺ p2 ∧ ∀p ∈ P.¬(p1 ≺ p ∧ p ≺ p2)

We immediately have the following corollary.

Corollary 1: Any specification structure can be con-

sistently evaluated.

Proof (sketch): This follows directly from Theorem 1

and the fact that any graded poset has properties 1) and

2) defined therein.

The relation between consistently-evaluable sets and

partially-ordered sets are shown more clearly in Fig.

4. The main difference between consistently-evaluable

posets and graded posets is the constraint that graded

posets are defined such that the ranks assigned to two

nodes which are comparable have to have a difference

of one. It is easier to check whether a set is graded,

as opposed to consistently-evaluable because of the

following lemma:

Lemma 1: A poset is graded if and only if all of its

maximal chains have the same length.

Any consistently evaluable poset can be reduced to a

“canonical” form that has the graded property with the

same consistent evaluation.

Theorem 3: Each consistently evaluable poset can be

turned into a graded poset that is equivalent under

consistent evaluation.

Consistently-evaluable posets

r = 3

r = 2

r = 1

r = 3

r = 2

r = 1

Graded posets

r = 3

r = 2

r = 1

r = 3

r = 2

r = 1

Fig. 4. Graded posets (specification structure) are a subset of
consistently-evaluable posets.

Proof: This is achieved by removing all “edges” that

span more than 2 levels of antichains in the unique

partition of Theorem 1. One can without much difficulty

verify that doing so will remove all maximal chains

with length strictly less than the total number of these

antichains, which by Lemma 1 implies that the resulting

poset is graded. Since the other antichains are not

affected by these operations, the resulting evaluation is

not affected either.

Example 4 (Evaluating a specification structure):

Let S, L, ND, FE, Cf , C be dimensional

properties denoting safety, lawfulness, no deadlock,

fuel efficiency, comfort, and courtesy respectively.

Let P := {S,L,ND,FE,Cf,C}. The partial

order on these dimensional properties is shown in

Fig. 5. Given the current world configuration, we

assume the oracle can determine which subset of

specifications will be satisfied by taking a given

action. Let Pα := {S,ND,FE} denote the subset of

specifications satisfied by taking action α. Similarly, let

Pβ := {S,Cf,C}. To compare the actions α and β,

given Pα, Pβ , we use the evaluator W defined in the
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Fig. 5. This shows how the consistent evaluator function W works
on a specification structure. The function W computes a tuple for
each subset, and compares the elements from most significant to least
significant digits (left to right).

proof sketch of Theorem 1 to make the comparison.

W (Pα) = [1, 1, 1] since there is one specification from

each rank that can be satisfied by taking the action

α, and W (Pβ) = [1, 0, 2] since there is one property

with highest rank (r=2) and two properties with lowest

rank (r=0) that can be satisfied by taking action β.

Therefore, to evaluate their relative importance, the most

significant figure corresponds to the left-most element

in the tuple since that element has the highest rank. We

begin our comparison there. Note Wi represents the

ith the element of the tuple. Since W0(Pα) = 1 and

W0(Pβ) = 1, we have to keep comparing elements in

the tuple to determine which one has higher ordering.

We find W1(Pα) > W1(Pβ). Therefore, Pα dominates

Pβ by the weak order imposed by the W evaluator and

therefore, the action α should be chosen over β.

IV. CONSISTENCY AND COMPLETENESS

We would like to introduce the ideas of consistency

and completeness of a set of specifications that are

hierarchically-ordered in a specification structure. In

this context, consistency is defined as the ability to

be uniquely and consistently evaluable. Completeness

is defined by the extent of the dimensional properties

specified. A specification structure that has more dimen-

sional properties (i.e. encompasses a broader range of

specifications) is therefore more complete.

A. Consistency

The notion of consistency comes from Theorem 4,

which says that there is a unique weak order on the

powerset of a specification structure regardless of the

consistent evaluator used.

Theorem 4 (Consistency implies uniqueness): If P is

a poset with an ordering relation � that can be consis-

tently evaluated, then all consistent evaluators of P are

equivalent. That is, for any pair of consistent evaluators

fa, fb of P , for all P1, P2 ⊆ P , we have

fa(P1) ≤ fa(P2) ⇔ fb(P1) ≤ fb(P2)
Proof (sketch): This result follows from applying Theo-

rems 1 and 2 and Definition 3. A full proof is available

in [14].

B. Completeness

As a dual to how the placement of the edges of

the directed graph presenting a specification structure

determines its consistency, we propose that the inclusion

(or exclusion) of nodes determines its (relative) com-

pleteness.

In order to make an existing specification structure

more complete, we must be able to refine the graph in

a consistent manner. Refinement is equivalent to adding

dimensional properties (nodes) or comparisons (edges)

to the specification structure in a way that preserves

the gradedness property of a specification structure. We

now define how to properly add a node or edge into

the specification structure in a way that preserves the

specification structure’s mathematical properties.

The following is a direct corollary of Lemma 1.

Corollary 2 (Proper mode or edge refinement): If a

node (or an edge) is added to the specification structure

such that its relationship to the other nodes (the com-

parison it makes) is defined in a way that all maximal

chains have the same length, then the resulting partially

ordered set is also a specification structure.

Examples for proper (and improper) ways of adding

a new node as well as examples of making minimal

modifications to accommodate for an inconsistently-

added node are included in [14].

Example 5: Here, we give a very simple specifica-

tion structure: lawfulness (L) ≺ no deadlock (ND)

≺ safety (S). We consider the consistent evaluator W

(presented in the proof sketch of Theorem 1). W will

have the ordering W ({L}) < W ({ND}) < W ({S}) <
W ({S,L}) < W ({S,ND}) < W ({S,L,ND}). The

ordering intuitively means that a car should always

prioritize taking actions that satisfy all three types of

specifications. However, if there is a situation where

a car cannot ensure safety without breaking the law,

then it should break the law to maintain safety since

W ({S}) > W ({L}). Also, this hierarchy says if there

is a situation where the car is in a deadlock, it can break

the law since W ({S,ND}) > W ({S,L}) as long as the

action is still safe.

As long as the car chooses behaviors that respect the

weak order from the consistent evaluator on the speci-

fication structure, the system will satisfy the guarantees

part of the assume-guarantee contract, and therefore

perform actions that are “correct”. We now introduce

how assumptions can be defined with respect to the

specification structure.
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Fig. 6. The assumptions are based on a set of specifications
structures that satisfy some constraints, which is shown on the left.
The guarantees are based on a single specification structure that is
shown on the right.

V. ASSUME-GUARANTEE PROFILING

While each autonomous vehicle should only guarantee

that it will behave according to a single specification

structure, we want our assumptions on the environment

(other agents) to accommodate for the diverse behaviors

displayed by human drivers who may not follow the law

all the time. This implies that other agents might choose

to follow any one of a large number of possible specifi-

cation structures. We constrain the set of specifications

structures of other agents to always prioritize safety first.

Since other agents presumably follow the law most of

the time, we also include a relative ordering constraint

where safety is prioritized before the law. We have only

defined a relative ordering between safety and law in

the assumptions since we do not exactly know where

other dimensional properties will fit within that agent’s

specification structure. Therefore, our assumptions on

the environment can be defined as follows:

Definition 5 (Assumption set): Let S denote the set

of all specification structures. Let P be a set of dimen-

sional properties. Let p ∈ P . The assumptions in the

assume-guarantee contract is defined as:

Aspec = {Si ∈ S|(safety ∈ Si) ∧ (lawfulness ∈ Si)

∧(∀p ∈ Si.p � safety)}.

It is the set of all specification structures that both

safety and lawfulness are included in the specification

structure and that safety has the highest rank out of

all dimensional properties included in the specification

structure.

The following revised assume-guarantee definition

of Definition 1 characterizes the set of specification

structures agents in the environment can be assumed to

have and the specifications that an individual self-driving

car can guarantee.

Definition 6 (Assume-guarantee profiling revised):

An assume-guarantee contract C defined for an agent is

a pair (A,G), where

1) A is a set of specification structures for the agent’s

environment that is a subset of the set generated

by Definition 5.

no collision

no delaywell-being

courtesy

lawfulness

no collision

no dead/live-lock

lawfulness

comfort no delay courtesy

fuel econ local etiquette

Fig. 7. Two examples of refined assumption (left) and guarantee
(right) specification structures. Dimensional properties of the root
structures are in bold text. The left could represent an ambulance and
the right could represent a civilian vehicle.

2) G is the guarantee that the agent with respect to a

single, pre-defined specification structure.

This assume-guarantee profiling is shown in Fig. 6.

Let J be the index set for a set of agents. Given

Cj = (Aj ,Gj), where j is the index of an agent and

Aj are the assumptions that agent j is making about its

environment while Gj is its guarantees. We say that the

group of agents indexed by J are compatible if

∀j ∈ J .∀i ∈ J − {j}.Gj ⊆ Ai

This says that the guarantees of agent j must be included

in the assumptions of all other agents in the compatible

set. If one agent i has guarantees corresponding to a

specification structure that is not included in another

agent k’s assumptions, then correct behavior cannot be

guaranteed. Assuming that all agents’ assumptions and

guarantees are compatible, we can formulate the notion

of a blame-worthy action/strategy.

Definition 7 (Blameworthy action): A blameworthy

action/strategy is one in which an agent violates its

guarantees, thereby causing another agent’s assumptions

not to be satisfied and thus resulting in an unwanted

situation where blame must be assigned.

In order to show an example of an assume-guarantee

contract that might be legally imposed for self-driving

cars, we present a set of axioms for the road. The spec-

ification structures defined in the assumptions and guar-

antees of this contract are intentionally left unrefined,

since it would ultimately be up to a car-manufacturer

to determine the remaining ordering of specification

properties.

A1 Other agents will not act such that collision is

inevitable.

A2 Other agents will often act corresponding to traffic

laws, but will not always follow them.

G1 An agent will take no action that makes collision

inevitable.

G2 An agent will follow traffic laws, unless following

them leads to inevitable collision.

G3 An agent may violate the law if that can safely get

it out of a dead/live-lock situation.
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We can see from Fig. 7 how these axioms have a direct

mapping to a specification structure. We argue that this

sort of root structure might be imposed by a governing

body to ensure the safe behaviors of self-driving cars.

VI. GAME EXAMPLES

In this section, we present some preliminary examples

of how these types of high-level behavioral specifica-

tions that are defined via these specification structures,

might be applied in some traffic scenarios.

Under the simplified assumption that each agent has a

single specification structure (i.e. agents are not human),

each agent will have a well-defined ordering of which

actions have higher value, and will therefore have a

well-defined utility function over actions. Game theory

provides a mathematical model of strategic interaction

between rational decision-makers that have known utility

functions[3]. We can therefore use game-theoretic con-

cepts to analyze which pair of actions will be jointly

advantageous for the agents given their specification

structures.

Example 6: Consider the case where there are two

agents, each of whose specification structures are spec-

ified in Fig. 8. In this game, Player Y encounters some

debris, and must choose an action. Player Y can either

choose to stay in its current location, or do a passing

maneuver that requires it to break the law. Player X

represents a car moving in the opposite direction of

Player Y. In this case, Player X can either move at its

current velocity or accelerate. The move and accelerate

action make Player X move one and two steps forward

respectively. The W function is the same as one the

proof sketch of Theorem 1. Wx is evaluated on the

X

YSx

no collision

SY

performance

lawfulness

no collision

  lawfulness

performance

Fig. 8. The game scenario when Player Y encounters debris on its
side of the road. The specification structures of each of the agents are
given by Sx and Sy .

specification structure Sx shown on the left side of

Fig. 8 and Wy is evaluated on Sy . Assuming there is

a competent oracle who gives the same predictions for

both agents, the resulting payoff matrix according to the

specification structures are given in Table I (note that an

equivalent decimal conversion of the scores is given for

ease of reading).

TABLE I

playerX/playerY Stay Pass

Move
Wx(1, 1, 0) ∼ 6
Wy(1, 0, 1) ∼ 3

Wx(1, 1, 0) ∼ 6
Wy(1, 1, 0) ∼ 6

Accelerate
Wx(1, 1, 1) ∼ 7
Wy(1, 0, 1) ∼ 3

Wx(0, 0, 0) ∼ 0
Wy(0, 0, 0) ∼ 0

From the table, we can see there are two Nash equilib-

ria in this game scenario. The two equilibria are Pareto

efficient, meaning there are no other outcomes where

one player could be made better off without making the

other player worse off. Since there are two equilibria,

there is ambiguity in determining which action each

player should take in this scenario despite the fact that

the specification structures are known to both players.

There is a whole literature on equilibrium selection

[3]. The easiest way to resolve this particular stand-

off, however, would be to either 1) communicate which

action the driver will take or 2) define a convention that

all self-driving cars should have when such a situation

occurs. In this particular scenario, however, Player X

can certainly avoid accident by choosing to maintain

speed while Player Y can also avoid accident by staying.

If any “greedy” action of either Player X or Y would

pose the risk of crashing depending on the action of the

other player. This suggests a risk-averse resolution in

accident-sensitive scenarios like this one. We will focus

on defining a more systematic way of resolving multiple

Nash equilibria in future work.

Example 7: For this paper, we have abstracted the

perception system of the self-driving car to the all-

knowing oracle. We first consider the case where the

oracles on each of the cars are in agreement, and then

consider the potential danger when the oracles of the

cars differ. In this scenario, we assume that there are two

cars that are entering an intersection with some positive

velocity, as shown in Fig. 9.

XY

no collision

SX, SY

lawfulness

performance

Fig. 9. The game scenario where two cars are approaching an
intersection, but have different beliefs about the state of the traffic
light.

In the case where both vehicles’ oracles agree on the

same information, i.e. that the yellow light will remain

on for long enough for both vehicles to move past the

intersection, the best action for both Player X and Player

Y is to move forward.

Now, consider the case where the oracles are giving

incompatible beliefs about the environment, namely, the

state of the traffic signal. Let X have the erroneous belief

the traffic light will turn red very soon, and it assumes

that Y’s oracle is believes the same thing. X’s oracle

gives rise to Table II, according to which, the conclusion

that Player X will make is that both of the cars should

choose to slow down.

Assume that Y has a perfect oracle that predicts the

traffic light will stay yellow for long enough such that Y
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TABLE II

playerX/playerY Slow Move

Slow
Wx(1, 1, 0) ∼ 6
Wy(1, 1, 0) ∼ 6

Wx(0, 1, 0) ∼ 2
Wy(0, 0, 0) ∼ 0

Move
Wx(1, 0, 1) ∼ 3
Wy(1, 1, 0) ∼ 6

Wx(1, 0, 1) ∼ 3
Wy(1, 0, 1) ∼ 3

would also be able to make it through the intersection.

If Y assumes that X has the same information (see

Table III), then the best choice for both is to move

forward into the intersection.

TABLE III

playerX/playerY Slow Move

Slow
Wx(1, 1, 0) ∼ 6
Wy(1, 1, 0) ∼ 6

Wx(0, 1, 0) ∼ 2
Wy(0, 0, 0) ∼ 0

Move
Wx(1, 1, 1) ∼ 7
Wy(1, 1, 0) ∼ 6

Wx(1, 1, 1) ∼ 7
Wy(1, 1, 1) ∼ 7

The incompatible perception information will thus

cause Player X to stop and Player Y to move forward,

ultimately leading to collision.

This particular collision is caused by errors in the

perception system. Future work will need to focus on

developing a better perception system or on creating a

system that will yield correct behaviors even perception

uncertainty.

VII. CONCLUSION AND FUTURE WORK

To summarize, we have introduced a framework that

allows us to formulate specifications that govern high-

level behaviors of autonomous vehicles. If specifications

are hierarchically ordered into a specification structure,

actions and strategies can be compared to one another

in a consistent manner. Furthermore, the specification

structure can be made more complete by properly defin-

ing new properties and relations. We introduce the idea

of having assume-guarantee contracts defined over these

specification structures that serve as profiles for implicit

agreement. A contract essentially says if the environment

can be assumed to behave according to some softly-

constrained specification structure, then the self-driving

car can guarantee it will behave according to its own

specification structure. Blame is defined as the case

where a car does not act according to its assumed speci-

fication structure. Finally, we provide some examples of

how cars following these specification structures might

behave in game-theoretic experiment settings.

In the future, we hope to extend the game-theoretic

framework that deals with two cars that know each

other’s specification structures to a case that deals with

human-driven car with a more ambiguous specification

structure and a self-driving car with a known speci-

fication structure. Integrating perception uncertainty in

this formulation would make it more applicable to real-

life settings. Another interesting direction is to investi-

gate sufficient and/or necessary conditions for stronger

guarantees (such as robust safety) under the profiling

framework by combining tools and techniques from

formal methods (e.g., inductive invariants) and control

theory (e.g., Lyapunov functions).
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